Constraint Solving by Quantum Annealing

Philippe Codognet CNRS / Sorbonne U. / U. of Tokyo Japanese-French Laboratory for Informatics JFLI - IRL 3527, Tokyo, JAPAN

Main Idea

- Two main paradigms in Quantum Computing :
 - Gate-model
 - Quantum annealing
- Investigate the use of Quantum Annealing (QA) for Constraint Satisfaction Problems
- QUBO is the input format for QA Systems
 Quadratic Unconstrained Binary Optimization
- Implementation on quantum computer
 D-Wave Systems Advantage (5000 qubits)

Modeling Combinatorial Optimization and Constraint Satisfaction Problems in QUBO

- "simple" problems :
 - A. Lucas, Ising Formulations of Many NP Problems, Frontiers in Physics, vol. 2, pp. 5, Feb 2014
 - Fred Glover, Gary Kochenberger &Yu Du, A Tutorial on Formulating and Using QUBO Models, arxiv.org 2019
- More complex problems from OR or CP such as:
 - Quadratic Assignment Problem
 - N-queens
 - Costas Arrays
 - Magic Squares

What is QUBO exactly ?

- QUBO = Quadratic Unconstrained Binary Optimization
- Consider *n* Boolean variables $x_1, ..., x_n$ and a quadratic expression over $x_1, ..., x_n$ to minimize: $\sum_{i=1}^{n} q_i x_i + \sum_{i=1}^{n} q'_i x_i^2 + \sum_{i,j} q_{ij} x_i x_j$
- Equivalent to :

$$\sum_{i\leq j} q_{ij} x_i x_j$$

QUBO in matrix format: minimize y = x^tQx
 where x is a vector of binary decision variables
 and Q is a square matrix of constants

The Ising Model

- The **Ising model** is a mathematical model of ferromagnetism in statistical mechanics
- atomic "spins":
 either +1 or -1
- 2D Lattice : Hamiltonian (energy function) is expressed by *H*

[from Yamaoka 2019]

 J_{ij} = coupling strength between *i* and *j*, h_j = bias on *i*

Solving techniques for QUBO

- Software:
 - CPLEX (Branch-and-Cut quadratic integer optimizer)
 - specialized version of Tabu Search
 - (e.g. algorithms by F. Glover, J-K. Hao et al.)
- Hardware:
 - CMOS Digital Annealing (« quantum-inspired »)
 Fujitsu DAU
 - Quantum Annealing
 D-Wave
 - Others (prototypes)

Quantum Annealing

- Introduced by [Kadowaki & Nishimori 1998]
- Use quantum tunneling effect to escape local minima instead of thermal jump
- Quantum tunneling

 quantum phenomenon
 where a wavefunction
 can propagate through
 a potential barrier.

QUBO... Unconstrained ?

- In QUBO, the « U » stands for « unconstrained »
- Model only have an objective function to optimize

- Could we also extend that in order to represent some problems with « constraints » ?
- Yes: → add constraints as « penalties » in the objective function (to minimize)

• Similar to constraint-based local search...

Constraints as penalties

 Penalties are chosen so that they are equal to zero for feasible solutions (i.e. satisfying the constraints) and some positive value otherwise, e.g.:

- constraint $x + y \le 1$ leads to penalty: xy

- constraint x = y leads to penalty: x + y - 2xy

- Penalties are compositional
 - by addition
 - With penalty coefficient (weights) for each constraint

The « one-hot » Constraint

- Often used in Boolean models e.g. graph *n*-coloring, each node *i* has one color *j* $\Sigma_{j=1}^n x_{ij} = 1$
- Penalty in objective function in QUBO :

$$(\sum_{j=1}^{n} x_{ij} - 1)^2 = -\sum_{j=1}^{n} x_{ij} + 2 \sum_{j < k} x_{ij} x_{ik} + 1$$

• Also for « at-most-one » constraint $\sum_{i=1}^{n} x_i \le 1$ In QUBO : $(\sum_{i=1}^{n} x_i - \frac{1}{2})^2$

Corresponding Penalty: $\Sigma_{i < j} x_i x_j$

The « all-different » Constraint

- In Constraint Programming : *all_different([x₁,...x_n])*
 - e.g. for N-queens, Magic Square, Costas Array Problem, ...

• In Boolean models we need n^2 variables x_{ij} such that:

 $x_{ij} = 1$ iff x_i has value j

• *All_different* can be translated by 2*n* constraints:

$$\forall i \in \{1, n\} \ \Sigma_{j=1}^n x_{ij} = 1$$

$$\forall j \in \{1, n\} \ \Sigma_{i=1}^n x_{ij} = 1$$

« All-different » in QUBO

• Therefore in QUBO, 2*n* penalties of the form:

$$\forall i \in \{1, n\} \ (\Sigma_{j=1}^{k} x_{ij} - 1)^2$$

$$\forall j \in \{1, n\} \ (\Sigma_{i=1}^{k} x_{ij} - 1)^2$$

• Adding all expressions together gives the overall penalty:

$$\sum_{k=1}^{n} \sum_{i < j} x_{ik} x_{jk} + \sum_{k=1}^{n} \sum_{i < j} x_{ki} x_{kj} - \sum_{i=1, j=1}^{n} x_{ij}$$

The Quadratic Assignment Problem in QUBO

• **Problem:** *n* locations {1,...,*n*}, *n* facilities {1,...,*n*},

flow matrix $F = (f_{ij})$, distance matrix $D = (d_{ij})$, variables x_{ik} $x_{ik} = 1$ if facility *i* assigned to location *k*, $x_{ik} = 0$ otherwise

• QUBO:

Objective function

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} \sum_{l=1}^{n} f_{ij} d_{kl} x_{ik} x_{jl}$$

To ensure that each facility is assign to a different location, we must add two sets of One-Hot constraints

$$\forall i \in \{1, \cdots, n\} \ (\sum_{j=1}^n x_{ij} - 1)^2, \ \forall j \in \{1, \cdots, n\} \ (\sum_{i=1}^n x_{ij} - 1)^2$$

More explicitly, we can use the penalty associated with an all-different constraint

$$p(\sum_{k=1}^{n}\sum_{i< j}x_{ki}x_{kj} + \sum_{k=1}^{n}\sum_{i< j}x_{ik}x_{jk} - \sum_{i=1, j=1}^{n}x_{ij})$$

Magic Square (CSPLIB 019)

 Place all the numbers in {1, 2, ..., n²} on a n × n square s.t. sum of the numbers in all rows, columns and two diagonals are equal

• 2n + 2 linear constraints: (*n* rows, *n* columns, 2 diagonals) e.g. column $j: \sum_{i=1}^{n} x_{ij} = M$ (with $M = \frac{n}{2}(n^2+1)$)

52	73	7	64	21	15	35	98	99	44
91	58	25	6	66	19	41	79	84	43
31	60	62	11	5	26	29	68	36	74
10	040	2	3	20	61	65	86	24	88
4	38	14	76	87	71	16	80	53	97
34	22	85	89	82	18	77	69	47	56
8	9	57	67	50	78	42	10	96	70
90	1	13	39	46	33	81	49	27	59
83	30	48	12	51	45	55	92	28	23
95	93	63	32	72	17	94	75	37	54

• And one *all_different* constraint

Magic Square in QUBO

- Variables: $x_{ij}^k = 1$ if variable x_{ij} has value k, $x_{ij}^k = 0$ otherwise
- Linear constraint on column *j*: $\sum_{i=1}^{n} (\sum_{k=1}^{n} k x_{ij}^k) = \frac{n}{2} (n^2 + 1)$
- Penalty in QUBO:

$$\sum_{i} k(k - n(n^2 + 1))x_{ij}^k + 2 \sum_{n*i+k < n*i'+k'} kk' x_{ij}^k x_{i'j}^{k'}$$

• All-different constraint:

$$\sum_{i=1,j=1}^{n} \sum_{\{k < k'\}} x_{ij}^{k} x_{ij}^{k'} + \sum_{k=1}^{n} \sum_{\{n * i + j < n * i' + j'\}} x_{ij}^{k} x_{i'j'}^{k} - \sum_{i=1,j=1,k=1}^{n} x_{ij}^{k} x_{ij}^{k} + \sum_{k=1}^{n} \sum_{\{n * i + j < n * i' + j'\}} x_{ij}^{k} x_{ij}^{k} + \sum_{k=1}^{n} \sum_{\{n * i + j < n * i' + j'\}} x_{ij}^{k} x_{ij}^{k} + \sum_{k=1}^{n} \sum_{\{n * i + j < n * i' + j'\}} x_{ij}^{k} x_{ij}^{k} + \sum_{k=1}^{n} \sum_{\{n * i + j < n * i' + j'\}} x_{ij}^{k} x_{ij}^{k} + \sum_{k=1}^{n} \sum_{\{n * i + j < n * i' + j'\}} x_{ij}^{k} x_{ij}^{k} + \sum_{k=1}^{n} \sum_{\{n * i + j < n * i' + j'\}} x_{ij}^{k} x_{ij}^{k} + \sum_{k=1}^{n} \sum_{\{n * i + j < n * i' + j'\}} x_{ij}^{k} x_{ij}^{k} + \sum_{k=1}^{n} \sum_{\{n * i + j < n * i' + j'\}} x_{ij}^{k} x_{ij}^{k} + \sum_{k=1}^{n} \sum_{\{n * i + j < n * i' + j'\}} x_{ij}^{k} x_{ij}^{k} + \sum_{k=1}^{n} \sum_{\{n * i + j < n * i' + j'\}} x_{ij}^{k} x_{ij}^{k} + \sum_{k=1}^{n} \sum_{\{n * i + j < n * i' + j'\}} x_{ij}^{k} x_{ij}^{k} + \sum_{k=1}^{n} \sum_{\{n * i + j < n * i' + j'\}} x_{ij}^{k} x_{ij}^{k} + \sum_{k=1}^{n} \sum_{\{n * i + j < n * i' + j'\}} x_{ij}^{k} x_{ij}^{k} + \sum_{i = 1, j = 1, k = 1}^{n} x_{ij}^{k} x_{ij}^{k} + \sum_{i = 1, j = 1, k = 1}^{n} x_{ij}^{k} x_{ij}^{k} + \sum_{i = 1, j = 1, k = 1}^{n} x_{ij}^{k} x_{ij}^{k} + \sum_{i = 1, j = 1, k = 1}^{n} x_{ij}^{k} x_{ij}^{k} + \sum_{i = 1, j = 1, k = 1}^{n} x_{ij}^{k} x_{ij}^{k} + \sum_{i = 1, j = 1, k = 1}^{n} x_{ij}^{k} x_{ij}^{k} x_{ij}^{k} + \sum_{i = 1, j = 1, k = 1}^{n} x_{ij}^{k} x_{ij}^{k} + \sum_{i = 1, j = 1, k = 1}^{n} x_{ij}^{k} x$$

• Penalty coefficients should be added...

Costas Array Problem (CAP)

- Proposed by Costas in the 60's
- Sonar / Radio applications
- Active community for 50 years
- Constructive methods exist

– but not valid for all n

- Very combinatorial, solutions are very scarce
 n=29 has only 164 solutions (23 unique) out of 29!
- still several open problems ...
 - Does costas arrays exist for n=32 ?

Modeling CAP in QUBO (1)

- Variables: $x_{ij} = 1$ if mark on (i, j), $x_{ij} = 0$ otherwise
- Basic constraints:
 - Only one mark per line: $\sum_{j=1}^{N} x_{ij} = 1$
 - Only one mark per column: $\sum_{i=1}^{N} x_{ij} = 1$
- Thus penality: $\sum_{i=1}^{N} \left(\sum_{j=1}^{N} x_{ij} 1 \right)^2 + \sum_{j=1}^{N} \left(\sum_{i=1}^{N} x_{ij} 1 \right)^2$ = $\sum_{k=1}^{n} \sum_{i < j} x_{ik} x_{jk} + \sum_{k=1}^{n} \sum_{i < j} x_{ki} x_{kj} - \sum_{i=1, j=1}^{n} x_{ij}$
- Objective function, ensuring the Costas property if =0 :

$$\sum_{i=1,h=1,k=1,l=1,j=i+1,m=1}^{N} x_{ih} x_{i+k,l} x_{jm} x_{j+k,m+l-h}$$

- Quartic expression... can be quadratized by adding 2 ancillary variables per monomial (basic scheme)
- Thus $n^3(n-1)^3$ new variables !

From HOBO to QUBO

- HOBO = Higher Order Binary Optimization
 i.e. with monomial more than quadratic
- Example: $x_1x_2x_3$ is not a quadratic term
- Several « quadratization » scheme exists
 - [Rosenberg 1976] : replace x_1x_2 by new variable y and add penalty function $3y + x_1x_2 2x_1y 2x_2y$
 - [Ishikawa 2011] for positive monomials
 - [Kolmogorov 2014] for negative monomials
 - [Boros, Crama et al. 2017] pairwise covers
- Pairwise covers seems a good compromise in practice...

Modeling CAP in QUBO (2)

- $d_{ij}^{kl} = 1$ iff mark on (i, j) and mark on (k, l), k > i
- Thus $n^2 \times n(n-1)/2$ new variables (+ $n^2 x_{ij}$)
- Costas property: no two d_{ij}^{kl} with same differences between indices (k i and l j)
- Objective function to minimize :

$$\sum d_{ij}^{kl} d_{ab}^{a+k-i,b+j-l} = 0$$

Problem size

Problem name	CAP	Magic Square
size	<i>n</i> =number of rows	<i>n</i> =number of rows
	(and of columns)	(and of columns)
integer variables	п	n^2
QUBO variables	$n^2 + \frac{n^3(n-1)}{2}$	n^4
n=5	275	625
n=10	4600	10000
n=12	9648	20736

• Remark:

- Fujitsu DAU has 8192 bits
- D-Wave Advantage has 5000 qubits
- In fact more qubits are needed for D-Wave...

The D-Wave System

Qubits in the D-Wave System

• Qubits are the lowest energy states of the superconducting loops that have a circulating current and corresponding magnetic field

 probability of falling into the 0 or the 1 state can be biased by applying an external magnetic field to the qubit (transverse field)

QA in the D-Wave System

• Quantum Hamiltonian:

$$\mathcal{H}_{ising} = -rac{A(s)}{2} \left(\sum_{i} \hat{\sigma}_{x}^{(i)}
ight) + rac{B(s)}{2} \left(\sum_{i} h_{i} \hat{\sigma}_{z}^{(i)} + \sum_{i>j} J_{i,j} \hat{\sigma}_{z}^{(i)} \hat{\sigma}_{z}^{(j)}
ight) {}_{\mathrm{Final \,Hamiltonian}}$$

where $\hat{\sigma}_{x,z}^{(i)}$ are Pauli matrices operating on a qubit q_i , and h_i and $J_{i,j}$ are the qubit biases and coupling strengths.

Nonzero values of h_i and $J_{i,j}$ are limited to those available in the working graph

[from D-Wave]

 By varying A(s) and B(s) over time the system moves from initial Hamiltonian to final Hamiltonian

D-Wave's QUBO solvers

• DWaveSampler:

- Quantum hardware solver on the QPU

- Hybrid Solver: (version 1 and version 2)
 - decomposition-based, mixing classical and quantum executions
- classical computation solvers:
 - Neal: simulated annealing
 - QBSolv: decomposition-based tabu search

Minor Embedding

• Problems have to be cast to the actual hardware architecture (not fully-connected graph):

D-Wave 2000	D-Wave Advantage		
2000 qubits	5000 qubits		
Chimera Architecture	Pegasus Architecture		
6-way connectivity	15-way connectivity		

 Several physical qubits used to represent logical qubits: *chained* qubits for missing connections

Logical Qubits vs. Physical Qubits

- According to [Raymond 2021]:
 - D-Wave Advantage (5000 qubits) can encode complete graph up to 182 logical qubits (with maximal chain lengths of 17)
 - D-Wave 2000X (2000 qubits) can encode complete graph up to 64 logical (maximal chain length of 17)
- Drastically reduces problem size when using QA hardware, if full connectivity is needed, e.g. because of global constraints such as « one-hot » or « all-different »

Experiments on D-Wave QPU Solver

- 12x12 QAP problems (QAPLIB): Rou12, Had12
- Minor embedding possible
- but result is infeasible solution: not permutation
 some qubit chains are broken...
- QPU solver cannot be used to solve a 12x12 QAP
- Need to use Hybrid Solver instead (mixing classical and quantum computations)

Quadratic Assignment Problem

QAP Problem	DAU	EO-QAP	D-WAVE Qbsolv	D-WAVE Hybrid Solver (30 sec.)	D-WAVE Hybrid Solver (200-300 sec.)
had12	3.392	120 (1 core) 0.00 (32cores)	613 1% from BKS	30 0.5% from BKS	200
rou12	0.448	0.013 (1 core)	135	30 3.4% from BKS	300

- DAU is Fujitsu's Digital Annealer Unit [Matsubara *et al.* 2019]
- EO-QAP is Extremal Optimization metaheuristic [Munera et al. 2016]
- D-WAVE Advantage (LEAP cloud access)
- D-WAVE QPU gives infeasible solution... (quantum computation time: 0.027s)

Constraint Satisfaction Problems

- Minor embedding for execution on QPU only for n=3
 Larger problems to be solved by Qbsolv or Hybrid Solver
- Magic Square:
 - n=4 solved by Hybrid Solver in 8 s., by QBSolv in 0.85 s.
 - For n ≥ 10 neither Hybrid Solver nor QBSolv can find a solution without any conflict
- Costas Arrays:
 - n=8 solved (1856 variables) in 4.89 s. by Hybrid Solver and 8.50 s. by QBSolv
 - N ≥ 10 cannot be solved to satisfiability by Hybrid Solver nor QBSolv (output solutions with ≈ 4 conflicts for n=10)

Conclusion

- QUBO: simple and expressive way to model combinatorial optimization or Constraint Satisfaction Problems
- QUBO: input language for quantum computers
- For problems with complex constraints, current QA hardware cannot yet compete with best heuristic methods
- But in the next years quantum hardware will improve, both in performance and size (number of qubits) ...
- Competitive w.r.t. best classical methods in 5 years ?