


Main Idea

Two main paradigms in Quantum Computing :
— Gate-model
— Quantum annealing

Investigate the use of Quantum Annealing (QA) for
Constraint Satisfaction Problems

QUBO is the input format for QA Systems

— Quadratic Unconstrained Binary Optimization

Implementation on quantum computer
— D-Wave Systems Advantage (5000 qubits)




Modeling Combinatorial Optimization and
Constraint Satisfaction Problems in QUBO

* “simple” problems:

— A. Lucas, Ising Formulations of Many NP Problems,
Frontiers in Physics, vol. 2, pp. 5, Feb 2014

— Fred Glover, Gary Kochenberger &Yu Du, A Tutorial on
Formulating and Using QUBO Models, arxiv.org 2019

* More complex problems from OR or CP such as:
— Quadratic Assignment Problem
— N-queens
— Costas Arrays
— Magic Squares



What is QUBO exactly ?

QUBO = Quadratic Unconstrained Binary Optimization

Consider n Boolean variables x;,..., x,
and a quadratic expression over x4,..., X, to minimize:

Zn =1qiXi T Zn 1C[ lx + Zl] qijXiX;j
Equivalent to :
Li<j QijXiX;

QUBO in matrix format: minimize y = x'Qx
where x is a vector of binary decision variables
and Q is a square matrix of constants



The Ising Model

* The Ising model is a mathematical model of
ferromagnetism in statistical mechanics

e atomic "spins“:

either +1 or -1

e 2D Lattice:
Hamiltonian

(energy function)

[from Yamaoka 2019]

is expressed by H

Jij = coupling strength between i and j, h; = biason i



Solving techniques for QUBO

e Software:
— CPLEX (Branch-and-Cut quadratic integer optimizer)
— specialized version of Tabu Search
(e.g. algorithms by F. Glover, J-K. Hao et al.)

* Hardware:
— CMOS Digital Annealing (« quantum-inspired » )
Fujitsu DAU ‘\
— Quantum Annealing
D-Wave
— Others (prototypes)




Quantum Annealing

* Introduced by [Kadowaki & Nishimori 1998]

* Use quantum tunneling effect to escape local
minima instead of thermal jump

* Quantum tunneling
= guantum phenomenon
where a wavefunction
can propagate through
a potential barrier.

Cost

Thermal Jump

Quantum
Tunneling

Configuration



QUBO... Unconstrained ?

In QUBO, the « U » stands for « unconstrained »

Model only have an objective function to optimize

Could we also extend that in order to represent some
problems with « constraints » ?

Yes: - add constraints as « penalties » in the objective
function (to minimize)

Similar to constraint-based local search...



Constraints as penalties

* Penalties are chosen so that they are equal to
zero for feasible solutions (i.e. satisfying the
constraints) and some positive value otherwise,

e.g.:
—constraint x + y < 1 leads to penalty: xy
— constraint x = y leads to penalty: x+vy — 2 xy

* Penalties are compositional
— by addition
— With penalty coefficient (weights) for each constraint



The « one-hot » Constraint

e Often used in Boolean models
e.g. graph n-coloring, each node i has one color
iiixij=1
* Penalty in objective function in QUBO :

(Z] 1Xl]—1)2 = —Zn 1xl]+22<kxijxik +1

* Also for « at-most-one » constraint X/ x; <1
In QUBO : (Z7L,x; — 2)?

Corresponding Penalty: X;_ix;x;



The « all-different » Constraint

* In Constraint Programming : all_different([x,,...x,])

— e.g. for N-queens, Magic Square, Costas Array Problem, ...

* In Boolean models we need n? variables x;; such that:

x;j = 1iff x; has value j

* All _different can be translated by 2n constraints:
Vi € {1, Tl} Z}?zlxij =1
V] S {1,Tl} Z?zlxij =1



« All-different » in QUBO

 Therefore in QUBO, 2n penalties of the form:
Vi e {l,n} (T x;; — 1)?
vj € {1,n} (Bix; — 1)?

* Adding all expressions together gives the overall penalty:

n n

n
k=1 i<y k=1 i<j i=1,j=1



The Quadratic Assighment Problem
in QUBO

 Problem: n locations {1,...,n}, n facilities {1,...,n},

flow matrix F = (f;) , distance matrix D = (d;), variables x;

x; = 1 if facility i assigned to location k, x;;, = 0 otherwise
QUBO:

Objective function

\4:
\4:

l]dklxlkx]l

d d
i=1 :]_ :1 =1

To ensure that each facility is assign to a different location, we must add two sets of One-Hot constraints
n n
Vie{l,---,n} (inj ~1)*, Vje{l,-,n} (inj ~ 1)
j=1 i=1

More explicily, we can use the penalty associated with an all-different constraint

n

p(szkixkj+Zinkxjk_ Z Xij)

k=1 i<j k=1i<j i=1, j=1



Magic Square (CSPLIB 019)

* Place all the numbersin {1,2,...,n%}lona
n X n square s.t. sum of the numbers in all
rows, columns and two diagonals are equal

e 2n + 2 linear constraints:
(n rows, n columns, 2 diagonals)
AN _—
e.g.columnj: 2;—y x;; = M
(with M =~ (n?+1) )

 And one all different constraint
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Magic Square in QUBO

Variables: x ij = lif variable x;; has value k, x = 0 otherwise

Linear constraint on column j: ?:1(2}2:1 kxfj) = %(n2 +1)

Penalty in QUBO:

2 k r kK
Zk(k—n(n +1))xk + 2 Z el
] nxi+k <nxi’'+k’
All-different constraint:

ISP YD VR TR Y

i=1,j=1 {k<k’} k=1 {nxi+j<nxi’+j } i=1,j=1,k=1

Penalty coefficients should be added...



Costas Array Problem (CAP)

* Proposed by Costas in the 60’s

* Sonar / Radio applications @

* Active community for 50 years

e Constructive methods exist @

— but not valid for all n
* Very combinatorial, solutions are very scarce
— n=29 has only 164 solutions (23 unique) out of 29!

* still several open problems ...
— Does costas arrays exist for n=32 ?



Modeling CAP in QUBO (1)

Variables: x;; =1if markon (i,j), x;; =0 otherwise
Basic constraints:
— Only one mark per line: Z] 1%ij=1

— Only one mark per column: Y 1xij =1

Thus penality: Y2, (X0, x5 — 1) + Y (X 2y — 1)2

=Zk=1 Zi<jxikxjk+ Zk=1 Zi<jxkixkj o ?11 1%ij

Objective function, ensuring the Costas property if =0 :

N
i=1,h=1,k=1,1=1,j=i+1,m=1  Xih Xi+k,l Xjm Xj+k;m+1-h

Quartic expression... can be quadratized by adding 2 ancillary
variables per monomial (basic scheme)

Thus n3(n — 1) new variables !



HOBO
l.e. wit
Examp
Severa

From HOBO to QUBO

= Higher Order Binary Optimization

n monomial more than quadratic
e: X1X,X3 is not a quadratic term

« quadratization » scheme exists

— [Rosenberg 1976] : replace x;x, by new variable y and add
penalty function 3y + x1x, — 2x1y — 2Xx5,Y

— [Ishikawa 2011] for positive monomials

— [Kolmogorov 2014] for negative monomials

— [Boros, Crama et al. 2017] pairwise covers

Pairwise covers seems a good compromise in practice...



Modeling CAP in QUBO (2)
dﬁ‘jl = 1iff mark on (i,j) and markon (k, 1),k > i
Thus n? X n(n — 1)/2 new variables (+ n* x;)

Costas property: no two d with same differences
between indices (k — i and l —J)

Objective function to minimize :
zdkl da+k Lb+j-l _ o



Problem size

Problem name CAP Magic Square
size n=number of rows | n=number of rows
(and of columns) (and of columns)
integer variables n n*
(e
QUBO variables n’ + # n*
n=>5 275 625
n=10 4600 10000
n=12 9648 20736
* Remark:

— Fujitsu DAU has 8192 bits
— D-Wave Advantage has 5000 qubits

* |n fact more qubits are needed for D-Wave...



The D-Wave System

Client Libraries JSON/HTTPS
WAN/LAN Solver API (SAPI)
Web Ul HTTPS
e

S
e
Quantum Machine
Instructions
Cryostat g E
D-Wave QPU 0

[from D-Wave]



Qubits in the D-Wave System

* Qubits are the lowest energy states of the superconducting loops
that have a circulating current and corresponding magnetic field

» probability of falling into the O or the 1 state can be biased by
applying an external magnetic field to the qubit (transverse field)

High Energy (@) (b) (c)
Superposition 0 1 Higher
state probability
A of lower state
Y 7~ M ¢ S [«
: s tic
Low Energy ) 4 N ) o T |~ (from D-Wave]



QA in the D-Wave System

e Quantum Hamiltonian:

A(s (i B(s e A (4) ~ (4
Hosog = g)(zg;)) +—é)(Zhiag}+ZJ’m g g))

i>j

h o N .

Initial Hamiltonian Final H;[;liltonian

where &f:}z are Pauli matrices operating on a qubit g;, and h; and J; ; are the qubit biases and

coupling strengths.

Nonzero values of h; and JB-J are limited to those available in the working graph [from D-Wave]

e By varying A(s) and B(s) over time the system
moves from initial Hamiltonian to final
Hamiltonian



D-Wave’s QUBO solvers

* DWaveSampler:

— Quantum hardware solver on the QPU

* Hybrid Solver: (version 1 and version 2)

— decomposition-based, mixing classical and quantum
executions

* classical computation solvers:
— Neal: simulated annealing

— QBSolv: decomposition-based tabu search



Minor Embedding

* Problems have to be cast to the actual hardware
architecture (not fully-connected graph):

D-Wave 2000 D-Wave Advantage
2000 qubits 5000 qubits
W " o »
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6-way connectivity 15-way connectivity

e Several physical qubits used to represent logical
qubits: chained qubits for missing connections



Logical Qubits vs. Physical Qubits

* According to [Raymond 2021]:

— D-Wave Advantage (5000 qubits) can encode
complete graph up to 182 logical qubits (with
maximal chain lengths of 17)

— D-Wave 2000X (2000 qubits) can encode complete
graph up to 64 logical (maximal chain length of 17)

* Drastically reduces problem size when using QA
nardware, if full connectivity is needed, e.g.
pecause of global constraints such as « one-hot »
or « all-different »




Experiments on D-Wave QPU Solver

e 12x12 QAP problems (QAPLIB): Roul2, Had12

 Minor embedding possible

* but result is infeasible solution: not permutation
— some qubit chains are broken...

e QPU solver cannot be used to solve a 12x12 QAP
* Needtouse Hybrid Solver instead

(mixing classical and quantum computations)



Quadratic Assignment Problem

QAP D-WAVE D-WAVE D-WAVE
Problem | DAU EO-QAP Qbsolv Hybrid Solver | Hybrid Solver
(30 sec.) (200-300 sec.)
had12 3.392 | 120 (1 core) 613 30 200
0.00 (32cores) | 1% from BKS | 0.5% from BKS
roul2 0.448 | 0.013 (1 core) 135 30 300
3.4% from BKS

 DAU is Fujitsu’s Digital Annealer Unit [Matsubara et al. 2019]

* EO-QAP is Extremal Optimization metaheuristic [Munera et al. 2016]
 D-WAVE Advantage (LEAP cloud access)
 D-WAVE QPU gives infeasible solution... (quantum computation time: 0.027s)




Constraint Satisfaction Problems

 Minor embedding for execution on QPU only for n=3
Larger problems to be solved by Qbsolv or Hybrid Solver

* Magic Square:
— n=4 solved by Hybrid Solverin8s., by 0BSolvin0.85s.

— Forn 210 neither Hybrid Solver nor QBSolv canfinda
solution without any conflict

* Costas Arrays:

— n=8 solved (1856 variables) in 4.89s. by Hybrid Solver
and 8.50s. by OBSolv

— N 2 10 cannot be solved to satisfiability by Hybrid Solver
nor QBSolv (output solutions with = 4 conflicts for n=10)



Conclusion

QUBO: simple and expressive way to model
combinatorial optimization or Constraint Satisfaction
Problems

QUBO: input language for guantum computers

For problems with complex constraints, current QA
hardware cannot yet compete with best heuristic
methods

But in the next years quantum hardware will improve,
both in performance and size (hnumber of qubits) ...

Competitive w.r.t. best classical methods in 5 years ?



