
Domain Decomposition Preconditioners for Unstructured

Network Problems in Parallel Vector Architectures

Daniel Adrian Maldonado
with Francois Pacaud, Michel Schanen, Mihai Anitescu

Mathematics and Computing Science
Argonne National Laboratory

August, 2021

1 / 15

Motivation

• We are concerned with optimizing the
power grid.

minimize
u

f (x , u)

subject to g(x , u) = 0,

h(x , u) ≤ 0 .

• What are good ways to solve this on
a GPU?

• Here, g(x , u) represents the Network
equations.

• We have developed a reduced
method: duf = −fxg−1x gp.

Figure: Node Network by AndersonS7 under CC-SA-BY 4.0.
https://commons.wikimedia.org/wiki/File:Node Network.gif

2 / 15

The power flow problem

• We put a price ($) to power (MW). We define AC power as si = pi + jqi = v ī .

• This generalizes to: s = p + jq = diag(v) (Yv)∗.

• Or si = v∗Miv with Mi =
(
Gei + eTi G

)
+ j
(
−Bei + eTi B

)
. With Y = G + jB.

• For OPF we often write it in polar form:

pi = vi

n∑
j

vj(gij cos (θi − θj) + bij sin (θi − θj)) ,

qi = vi

n∑
j

vj(gij sin (θi − θj)− bij cos (θi − θj)) .

3 / 15

Solving the power flow

• Solving the power flow equations is one of the central themes in power engineering.

• Most commmon algorithm is Newton:[
p
q

]
=

[
f (x)
h(x)

]
, x =

[
θ
v

]
.

Where p ∈ Rnpv+npq, q ∈ Rnpq, etc. Our Jacobian matrix:

J(x) =

[
Fθ Fv

Hθ Hv

]
; b(x) =

[
f (x)− p
h(x)− q

]
; ∆x = −J−1b .

• J(x) is non-symmetric, positive-indefinite.

• Because unstructured grid topology, has no ”nice” structure (e.g. banded)

• Fortunately, it is very sparse.

4 / 15

Solving J∆x = b

• Initially direct solvers: LU and (later) KLU.

• Krylov solvers [Semlyen, 1996], GMRES. [Flueck, 1998] preconditioned with ILU, Jacobi,
Fast-Decoupled. BiCGSTAB vs GMRES [deLeon, 2002].

• Parallel block Jacobi and Additive Schwarz Method (ASM) [Abhyankar, 2013].

• GPU is well suited for block preconditioners (batched factorization/solve). Excellent if
blocks are small (fine-grained parallelism)

• But the smaller the block the worse the convergence. Difficult for unstructured grids.

• In our work we implement RASM to precondition GMRES and BiCGSTAB.

5 / 15

Additive Schwarz Method (ASM)

• Partition the vector x of unknowns into k subsets x1, x2, . . . , xk .
• To each subset we can define a restriction matrix, Ri , such that xi = Rix .
• ASM iteration:

xn+1 = xn +
k∑

j=1

R>j A−1j Rj(b − Ax)

• As a pre-conditioner:

M−1AS :=
k∑

j=1

R>j A−1j Rj

• To avoid communication, RASM:

M−1RAS :=
k∑

j=1

R̂>j A−1j Rj

• where
∑k

j=1 R̂j R̂
>
j = I .

6 / 15

Partition and Overlap

We use METIS and then compute overlap.

function overlap(Graph , subset; level =1)

subset2 = [neighbors(Graph , v) for

v in subset]

subset2 = reduce(vcat , subset2)

subset2 = unique(vcat(subset , subset2))

level -= 1

if level == 0

return subset2

else

return overlap(Graph ,

subset2 , level=level)

end

end

7 / 15

Implementation: ExaPF.jl

• Implementation in Julia.

• Preconditioner and solver lives in the
GPU.

• We use KernelAbstractions.jl for fast
prototyping.

@oneapi residual_kernel(F,...)

@cuda residual_kernel(F,...)

@roc residual_kernel(F ,...)

@kernel function residual_kernel !(F, ...)

i = @index(Global , Linear)

fr = (i <= npv) ? pv[i] : pq[i-npv]

F[i] -= pinj[fr]

if i>npv

F[i + npq] -= qinj[fr]

end

for c in colptr[fr]: colptr[fr+1]-1

to = ybus_re_rowval[c]

aij = v_a[fr]-v_a[to]

coef_cos = v_m[fr]*v_m[to]* ybus_re_nzval[c]

coef_sin = v_m[fr]*v_m[to]* ybus_im_nzval[c]

cos_val = cos(aij)

sin_val = sin(aij)

F[i] += coef_cos*cos_val+coef_sin*sin_val

if i > npv

F[npq + i] += coef_cos*sin_val

- coef_sin*cos_val

end

end

end

8 / 15

Implementation: ExaPF.jl

@inline function (*)(

P:: ASMPreconditioner ,

b:: CuVector{Float64}

)

n = size(b, 1)

P.y .= 0.0

mb_kernel! = mult_blks_gpu !(

CUDADevice ())

ev = mb_kernel !(C.cuyaux , b,

P.part_size , P.rest_size ,

P.part , P.blocks ,

ndrange=P.nblocks)

wait(ev)

return P.y

end

@kernel function mult_blks_gpu !(

y, b, p_len , r_len , part , blocks

)

i = @index(Global , Linear)

plen = p_len[i]

rlen = r_len[i]

for j=1: rlen

idxA = part[j,i]

for k=1:len

idxB = part[k,i]

y[idxA] += blocks[j,k,i]*b[idxB]

end

end

end

Memory transfer is expensive.

9 / 15

Preliminary results

System of 30k variables. ASM with no overlap.

Table: GMRES(n) vs BiCGSTAB iterations

Partitions BiCGSTAB GMRES(3) GMRES(100)

10 86 666 110
40 174 - 474
70 153 - 674

100 172 2046 764
130 198 - 1240
160 212 - 900
190 225 - 1581

10 / 15

Preliminary results

We tested several systems with and
w/o overlap.

0 50 100 150 200 250
Partitions

100

200

300

400

500

600

Ite
ra

tio
ns

530
2447
19068
57721

0 50 100 150 200 250
Partitions

0

200

400

600

800

1000

Ite
ra

tio
ns

n = 19068
overlap: 0
overlap: 1
overlap: 2
overlap: 3

0 50 100 150 200 250
Partitions

50

100

150

200

250

Ite
ra

tio
ns

n = 19068

0 50 100 150 200 250
Partitions

100

200

300

400

500

600

Ite
ra

tio
ns

n = 57721

0 50 100 150 200 250
Partitions

100

200

300

400

500

600

Ite
ra

tio
ns

n = 57721

11 / 15

Preliminary results

• Seeking fine-grained parallelism:

• - blocks, - iters, + mvmul, + fact.

• + overlap, - iters, + mvmul, + fact.

• Many factors. Need to experiment.

Overlap mul. blocks nrm2 factorize

0 50 % 10% 5%
1 50 % 5 % 20%
2 33 % 2 % 55%
3 15 % 1% 81%

Table: Percentage of total running time spent in
the most important kernel, for case n = 17036,
400 partitions and increasing overlap.

0 1 2 3
Overlap

0

25

50

75

100

125

150

175

200

Sp
ee

du
p

n = 530

partitions: 50
partitions: 100
partitions: 200
partitions: 400
partitions: 800
partitions: 1200

0 1 2 3
Overlap

0

20

40

60

80

Sp
ee

du
p

n = 2447

0 1 2 3
Overlap

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Sp
ee

du
p

n = 17036

0 1 2 3
Overlap

2

4

6

8

10

12

14

16

Sp
ee

du
p

n = 57721

12 / 15

Takeaways and future pathways

• To exploit GPUs, we would like to exploit fine-grained parallelism.

• Some iterative solvers seem to behave better (e.g. BiCGSTAB)

• Impact of ordering/partitions (METIS alternatives?)

• Other pre-conditioners? Example: Sparse Approximate Inverse (SPAI).

• Performance sometimes not intuitive.

• Optimizing solver and preconditioner: kernel launch and memory locality.

13 / 15

References

A. Semlyen (1996)

Fundamental concepts of a Krylov subspace power flow methodology

IEEE Transactions on Power Systems.

A.J. Flueck and Hsiao-Dong Chiang (1998)

Solving the nonlinear power flow equations with an inexact Newton method using GMRES

IEEE Transactions on Power Systems.

F. de Leon and A. Semlyen (2002)

Iterative solvers in the Newton power flow problem: preconditioners, inexact solutions, and partial Jacobian
updates.

IEE Proceedings - Generation, Transmission and Distribution.

S. Abhyankar (2013)

Evaluation of overlapping restricted additive Schwarz preconditioning for parallel solution of very large
power flow problems.

ACM.

14 / 15

Thank you

https://github.com/exanauts/ExaPF.jl

15 / 15

	First Section

