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Motivation

• We are concerned with optimizing the
power grid.

minimize
u

f (x , u)

subject to g(x , u) = 0,

h(x , u) ≤ 0 .

• What are good ways to solve this on
a GPU?

• Here, g(x , u) represents the Network
equations.

• We have developed a reduced
method: duf = −fxg−1x gp.

Figure: Node Network by AndersonS7 under CC-SA-BY 4.0.
https://commons.wikimedia.org/wiki/File:Node Network.gif
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The power flow problem

• We put a price ($) to power (MW). We define AC power as si = pi + jqi = v ī .

• This generalizes to: s = p + jq = diag(v) (Yv)∗.

• Or si = v∗Miv with Mi =
(
Gei + eTi G

)
+ j
(
−Bei + eTi B

)
. With Y = G + jB.

• For OPF we often write it in polar form:

pi = vi

n∑
j

vj(gij cos (θi − θj) + bij sin (θi − θj)) ,

qi = vi

n∑
j

vj(gij sin (θi − θj)− bij cos (θi − θj)) .
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Solving the power flow

• Solving the power flow equations is one of the central themes in power engineering.

• Most commmon algorithm is Newton:[
p
q

]
=

[
f (x)
h(x)

]
, x =

[
θ
v

]
.

Where p ∈ Rnpv+npq, q ∈ Rnpq, etc. Our Jacobian matrix:

J(x) =

[
Fθ Fv

Hθ Hv

]
; b(x) =

[
f (x)− p
h(x)− q

]
; ∆x = −J−1b .

• J(x) is non-symmetric, positive-indefinite.

• Because unstructured grid topology, has no ”nice” structure (e.g. banded)

• Fortunately, it is very sparse.
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Solving J∆x = b

• Initially direct solvers: LU and (later) KLU.

• Krylov solvers [Semlyen, 1996], GMRES. [Flueck, 1998] preconditioned with ILU, Jacobi,
Fast-Decoupled. BiCGSTAB vs GMRES [deLeon, 2002].

• Parallel block Jacobi and Additive Schwarz Method (ASM) [Abhyankar, 2013].

• GPU is well suited for block preconditioners (batched factorization/solve). Excellent if
blocks are small (fine-grained parallelism)

• But the smaller the block the worse the convergence. Difficult for unstructured grids.

• In our work we implement RASM to precondition GMRES and BiCGSTAB.
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Additive Schwarz Method (ASM)

• Partition the vector x of unknowns into k subsets x1, x2, . . . , xk .
• To each subset we can define a restriction matrix, Ri , such that xi = Rix .
• ASM iteration:

xn+1 = xn +
k∑

j=1

R>j A−1j Rj(b − Ax)

• As a pre-conditioner:

M−1AS :=
k∑

j=1

R>j A−1j Rj

• To avoid communication, RASM:

M−1RAS :=
k∑

j=1

R̂>j A−1j Rj

• where
∑k

j=1 R̂j R̂
>
j = I .

6 / 15



Partition and Overlap

We use METIS and then compute overlap.

function overlap(Graph , subset; level =1)

subset2 = [neighbors(Graph , v) for

v in subset]

subset2 = reduce(vcat , subset2)

subset2 = unique(vcat(subset , subset2 ))

level -= 1

if level == 0

return subset2

else

return overlap(Graph ,

subset2 , level=level)

end

end
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Implementation: ExaPF.jl

• Implementation in Julia.

• Preconditioner and solver lives in the
GPU.

• We use KernelAbstractions.jl for fast
prototyping.

@oneapi residual_kernel(F,...)

@cuda residual_kernel(F,...)

@roc residual_kernel(F ,...)

@kernel function residual_kernel !(F, ...)

i = @index(Global , Linear)

fr = (i <= npv) ? pv[i] : pq[i-npv]

F[i] -= pinj[fr]

if i>npv

F[i + npq] -= qinj[fr]

end

for c in colptr[fr]: colptr[fr+1]-1

to = ybus_re_rowval[c]

aij = v_a[fr]-v_a[to]

coef_cos = v_m[fr]*v_m[to]* ybus_re_nzval[c]

coef_sin = v_m[fr]*v_m[to]* ybus_im_nzval[c]

cos_val = cos(aij)

sin_val = sin(aij)

F[i] += coef_cos*cos_val+coef_sin*sin_val

if i > npv

F[npq + i] += coef_cos*sin_val

- coef_sin*cos_val

end

end

end
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Implementation: ExaPF.jl

@inline function (*)(

P:: ASMPreconditioner ,

b:: CuVector{Float64}

)

n = size(b, 1)

P.y .= 0.0

mb_kernel! = mult_blks_gpu !(

CUDADevice ())

ev = mb_kernel !(C.cuyaux , b,

P.part_size , P.rest_size ,

P.part , P.blocks ,

ndrange=P.nblocks)

wait(ev)

return P.y

end

@kernel function mult_blks_gpu !(

y, b, p_len , r_len , part , blocks

)

i = @index(Global , Linear)

plen = p_len[i]

rlen = r_len[i]

for j=1: rlen

idxA = part[j,i]

for k=1:len

idxB = part[k,i]

y[idxA] += blocks[j,k,i]*b[idxB]

end

end

end

Memory transfer is expensive.

9 / 15



Preliminary results

System of 30k variables. ASM with no overlap.

Table: GMRES(n) vs BiCGSTAB iterations

Partitions BiCGSTAB GMRES(3) GMRES(100)

10 86 666 110
40 174 - 474
70 153 - 674

100 172 2046 764
130 198 - 1240
160 212 - 900
190 225 - 1581
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Preliminary results

We tested several systems with and
w/o overlap.
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Preliminary results

• Seeking fine-grained parallelism:

• - blocks, - iters, + mvmul, + fact.

• + overlap, - iters, + mvmul, + fact.

• Many factors. Need to experiment.

# Overlap mul. blocks nrm2 factorize

0 50 % 10% 5%
1 50 % 5 % 20%
2 33 % 2 % 55%
3 15 % 1% 81%

Table: Percentage of total running time spent in
the most important kernel, for case n = 17036,
400 partitions and increasing overlap.
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Takeaways and future pathways

• To exploit GPUs, we would like to exploit fine-grained parallelism.

• Some iterative solvers seem to behave better (e.g. BiCGSTAB)

• Impact of ordering/partitions (METIS alternatives?)

• Other pre-conditioners? Example: Sparse Approximate Inverse (SPAI).

• Performance sometimes not intuitive.

• Optimizing solver and preconditioner: kernel launch and memory locality.
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Thank you

https://github.com/exanauts/ExaPF.jl
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