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Structured programming consists of base constructs that 
represent how programs are written. When optimizing 
programs, compilers typically operate on the 
intermediate representation (IR) of a control flow graph 
(CFG), which is derived from program source code 
analysis and represents basic blocks of instructions 
(nodes) and control flow paths (edges) in the graph. 
Thus, the overall program structure is captured in the 
CFG and the IR abstracts machine-specific intrinsics that 
the compiler ultimately translates to machine code. In 
particular, compilers can benefit from prior knowledge of 
optimizations that may be effective for specific CFG 
structures.
 

• Systematic process to construct control flow 
graphs for GPU kernels

• Techniques to perform subgraph matching on 
various kernel CFGs and GPUs

• Approaches to reveal thread divergence behavior 
based on CFG properties 

Differences in vertices |V| for162 CFG kernel pairs over 
Euclidean measure (application, architecture, kernel)

• Most matched CFGs had similarity score between 1.5 
and 2.2, with size differences under 10 vertices

• As differences increased, similarity matching degraded 
due to interpolating missing information (expected) 

• Demonstrated control-flow-based methodology for 
analyzing performance of CUDA applications

• Combined static binary analysis with dynamic profiling 
to characterize kernel intensity (memory, compute)

• Identified similarities of new implementations through 
subgraph matching

Figure 3. Control flow graphs (left) and transition 
probability matrices (right) for Pathfinder, 
comparing Kepler, Maxwell and Pascal GPUs.

Figure 5. Error rates when estimating dynamic instruction mixes from static for 
select kernels.
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Objectives

Future Work
• Incorporate memory reuse distance statistics of a kernel 

to help optimize memory subsystem and expose 
compute/memory overlaps

• Characterize deep learning workloads to optimize 
placement of tasks on multi-node multi-GPU setups

Results

• Transition probability matrices calculated for each kernel 
subgraph

• Spline interpolation employed to scale transition matrix 
before performing pairwise comparisons

• Affinity scores for CFGs (S1 and S2 for G1 and G2) 
matched via similarity measures (IsoRank, Euclidean)

• Methodology evaluated on 3 GPUs (Kepler, Maxwell, 
Pascal)

Instruction mix estimation error rates for MD and 
Backprop kernels as a function of matched kernels, with 
IsoRank scores between 1.00 to 1.30 

• Subgraph matching for arbitrary kernels with IsoRank 
and instruction mixes within a 8% margin of error

Figure 1. Base constructs of programs:  sequence, selection and loop

Figure 2. Overview of proposed methodology

Figure 4. Differences in vertices between two graphs over Euclidean for all GPU 
kernel combinations, with color as frequency


