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Abstract—Accelerator architectures specialize in executing
SIMD (single instruction, multiple data) in lockstep. Because the
majority of CUDA applications are parallelized loops, control
flow information can provide an in-depth characterization of a
kernel. Our methodology statically separates CUDA binaries into
basic block regions and dynamically measures instruction and
basic block frequencies. Our approach captures this information
in a control flow graph (CFG) and performs subgraph matching
across various kernel’s CFGs to gain insights into an application’s
resource requirements, based on the shape and traversal of the
graph, instruction operations executed and registers allocated,
among other information. The utility of our approach is demon-
strated with SHOC and Rodinia application case studies on a
variety of GPU architectures, revealing novel thread divergence
characteristics that facilitate end users, autotuners, and compilers
in generating high performing code.

I. INTRODUCTION

Structured programming consists of base constructs that rep-
resent how programs are written. When optimizing programs,
compilers typically operate on the intermediate representation
(IR) of a control flow graph (CFG), which is derived from
program source code analysis and represents basic blocks of
instructions (nodes) and control flow paths (edges) in the
graph. Thus, the overall program structure is captured in the
CFG and the IR abstracts machine-specific intrinsics that the
compiler ultimately translates to machine code. In particular,
compilers can benefit from prior knowledge of optimizations
that may be effective for specific CFG structures.

This work presents a scalable toolkit for heterogeneous
computing applications. Specifically, our approach provides
a new methodology for characterizing CUDA kernels using
control flow graphs and instruction operations executed. It
performs novel kernel subgraph matching to gain insights
into an application’s resource requirements. To the knowledge
of the authors, this work is a first attempt at employing
subgraph matching for revealing thread divergence behavior
and generating efficient code.

II. BACKGROUND

A CFG is constructed for each GPU kernel computation
and can be represented as a directed graph G = (N,E, s),
where (N,E) is a finite directed graph, and a path exists
from the START node s ∈ N to every other node. A unique
STOP node is also assumed in the CFG. A node in the graph
represents a basic block (a straight line of code without jumps
or jump targets), whereas directed edges represent jumps in
the control flow.
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Fig. 1. Transition probability matrices for Pathfinder (dynproc_kernel)
application, comparing Kepler (left) and Pascal (right) versions.

Transition probabilities represent frequencies of an edge
to a vertex, or branches to code regions, which describes
the application in a way that gets misconstrued in a flat
profile. Figure 1 displays transition probability matrices for
a kernel in the Pathfinder application. A stochastic matrix
could also facilitate in eliminating dead code, where states
with 0 transition probabilities represent node regions that will
never be visited. Kernels employing structures like loops and
control flow increase the complexity analysis, and transition
probabilities of kernels could help during code generation.

III. METHODOLOGY

Transition probability matrices are calculated for each ker-
nel subgraph. The entries of the transition probability matrix
were calculated by dividing the number of observed node
transitions i to j by the sum of code(M), shown as the
lower triangular elements, for some mi,j . Note that entries
of the upper triangular were discarded for convenience since
the lower triangular entries represent the node transitions.
Although the matrices differ in size, observe that a majority
of the transitions take place in the upper-left triangle, with a
few transitions in the bottom-right, for all matrices. The task
is to match graphs of arbitrary sizes based on its transition
probability matrix and instruction operations executed, among
other information.

We statically collect instruction mixes and source code
locations from generated code and map the instruction mixes
to the source locator activity as the program is being run. The
static analysis of CUDA binaries produces an objdump file,
which provides assembly information, including instructions,
program counter offsets, and line information. We attribute the
static analysis from the objdump file to the profiles collected
from the source code activity to provide runtime characteri-



1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
Euclidean Measure

0

10

20

30

40

|G
_1

| -
 |G

_2
|

Node Difference over Euclidean Distance

Fig. 2. Differences in vertices between two graphs, as a function of Euclidean
metric for all GPU kernel combinations. Color represents intensity.

zation of the GPU as it is being executed on the architecture.
This mapping of static and dynamic profiles provides a rich
understanding of the behavior of the kernel application with
respect to the underlying architecture.

A. Bilinear Interpolation

To scale the transition matrix before performing the pair-
wise comparison, we employ a spline interpolation procedure.
Spline interpolation is general form of linear interpolation for
functions of n-order polynomial, such as bilinear and cubic.
For instance, a spline on a two-order polynomial performs
bilinear interpolation on a rectilinear 2D grid (e.g. x and y).
The idea is to perform linear interpolation in both the vertical
and horizontal directions. Interpolation works by using known
data to estimate values at unknown points.

B. Pairwise Comparison

Once the matrix is interpolated, affinity scores for the CFGs
(S1 and S2 for graphs G′

1 and G′
2, respectively) are matched

via a similarity measure, which includes the IsoRank solution
and the Euclidean distance. By definition, sim(Gi, Gj) = 1
when i = j, with the similarity measure placing progressively
greater weights on objects that are further apart.

IV. RESULTS

Figure 2 projects the differences in vertices |V | for all 162
CFG kernel pairs as a function of the Euclidean measure
(application, architecture, kernel), with shade representing the
frequency of the score. Note that most matched CFGs had a
similarity score of 1.5 to 2.2 and had size differences under
10 vertices. Figure 2 also shows that as the differences in
vertices increase, similarity matching becomes degraded due to
the loss of quality of information when interpolating missing
information, which is expected. Another observation is that
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Fig. 3. Error rates when estimating instruction mixes statically from runtime
observations for selected matched kernels (x-axis), with IsoRank scores near
1.30.

strong similarity is exhibited when node differences of the
matched kernel pairs were at a minimum, between 0 and 8.

Figure 3 displays instruction mix estimation error rates,
calculated using mean squared error, for MD and Backprop
kernels as a function of matched kernels (x-axis) with IsoRank
scores between 1.00 to 1.30. Naming convention for G2 is as
follows: 〈architecture.suite.application.kernel〉. In general, our
approach is able to provide subgraph matching for arbitrary
kernels through the IsoRank score in addition to instruction
mixes within a 8% margin of error. Note that since relative
dynamic performance is being estimated from static informa-
tion, the error rates will always be high. By making use of
subgraph matching strategy as well as instruction operations
executed, our methodology is able to provide a mechanism to
characterize unseen kernels.

V. CONCLUSION

We presented a control-flow-based methodology for ana-
lyzing the performance of CUDA applications. We combined
static binary analysis with dynamic profiling to produce a
set of metrics that not only characterizes the kernel by its
computation requirements (memory or compute bound), but
also provides detailed insights into application performance.
Specifically, we provide an intuitive visualization and metrics
display, and correlate performance hotspots with source line
and file information, effectively guiding the end user to
locations of interest and revealing potentially effective opti-
mizations by identifying similarities of new implementations
to known, autotuned computations through subgraph matching.
We implemented this new methodology and demonstrated its
capabilities on SHOC and Rodinia applications.

Future work includes incorporating memory reuse distance
statistics of a kernel to characterize and help optimize the
memory subsystem and compute/memory overlaps on the
GPU. In addition, we want to generate robust models that will
discover optimal block and thread sizes for CUDA kernels for
specific input sizes without executing the application.


