
  

Interval Based Framework for Locking in Hierarchies

Saurabh Kalikar and Rupesh Nasre

{saurabhk, rupesh}@cse.iitm.ac.in
PACE Lab, CSE, IIT Madras

Introduction:
We present efficient locking mechanisms for hierarchical data structures.
A hierarchy is characterized by a containment relationship, in which the child nodes are contained within
their parent nodes.
Fine-grained locking Vs Hierarchical locking.

Fine-grained locking: Lock at node B only protects nodes B.
Hierarchical locking: Lock at node B protects whole sub-hierarchy rooted at B.

We address the practical issues in Intention Locks (IL) and present a novel approach of
hierarchical locking using intervals.
We assign an interval value to every node in the hierarchy in a preprocessing phase.
An interval is a pair (low, high) of integer values assigned to each node. 

Hierarchical Locking using Intervals: Lock Manager:

Challenges:
 
Consider a scenario where thread T1 has
acquired a lock on a node D.
Now, another thread T2 wants to acquire a lock on
a node B.
As node D is contained in the structure rooted at
node B, thread T2 can also access node D which
can lead to the data-race. 
Node D and B can not get locked simultaneously
because of such hierarchical dependency.
Intention locks are widely used for hierarchical
locking. X represents exclusive lock and IX is
corresponding intention-exclusive lock.

node D:1 2

node B:1 4

Maintains locks in the form of numbered intervals.

Unlike traditional hashed index of resources and waiting queues, we index our pool of
locks according to thread-ids.

Every thread has a specific location where it inserts its lock entries and each thread
gets a unique sequence number before accessing lock manager by incrementing a
global counter. 

Incrementing the counter and inserting the set of intervals to be locked happen
atomically.

The lock intervals for each thread are maintained in sorted order to avoid deadlocks.

After insertion, each thread checks independently whether there is any conflicting entry
in the lock-pool having a smaller sequence number.

If the thread does not  find any such overlap, the lock on all the inserted intervals is
granted.

Concurrent Lock Pool

  1

T1

   4

T3 Tn

Hierarchical Locking Using Concurrent Pool: 

Experimental Evaluation:
Carried out on an Intel Xeon E5-2650 v2 machine.

32 cores at 2.6 GHz, 128 GB RAM, CentOS 6.5.

STMBench7: A benchmark to test the effectiveness of locking techniques and the STM
implementations. 
STMBench7 has two existing locking techniques, Coarse-grained locking and Medium-
grained locking.

Stress Testing: 
1 million node binary tree and directed graph data structures, real-world XML hierarchy.
As we increase the number of lock requests per thread, the locking cost of Intention
Locks increase linearly, However, DomLock shows constant locking cost.

DomLock and NumLock both show higher throughput than coarse-grained and middle-
grained locking in STMBench7.
NumLock: On an average 25% throughput improvement over DomLock.
NumLock scales well according to the percentage of read-only operations, skewness in the
access patterns of locking requests, and number of locked nodes.
Both NumLock and DomLock are incapable of handling fine-grained requests and treat
every request as a hierarchical locking request.
Hi-Fi shows gradual improvement in execution as we increase the percentage of fine-
grained operations.

Ph.D. Forum: International Conference on Parallel Processing (ICPP 2018), University of  Oregon, Eugene, Oregon, USA13-16 August, 2018.

References: 

Saurabh Kalikar and Rupesh Nasre. 2016. DomLock: A new multi-granularity locking technique for hierarchies.
In PPoPP’16 and a journal version in TOPC’17.

Saurabh Kalikar and Rupesh Nasre. 2018. Numlock: Towards Optimal Multi-Granularity Locking in Hierarchies.
In ICPP’18.

Ganesh K, Saurabh Kalikar and Rupesh Nasre. 2018. Hi-Fi: Multi-Granularity Locking in Hierarchies with
Synergistic Hierarchical and Fine-Grained Locks. To be published in EuroPar’18.

Liu and Zang, 2016. Unleashing concurrency for irregular data structures. In ICSE’14.

Gray, J.N., Lorie, R.A., Putzolu, G.R.1975: Granularity of Locks in a Shared Data Base. In VLDB’75

Properties of Logical Intervals: 

If the Intervals of two nodes subsume,
then they have ancestor-descendant
relationship.

If the Intervals of two nodes partially
overlap, then they have at least one
common descendant node.

If the Intervals of two nodes are non-
overlapping, then the hierarchies
rooted at these nodes are disjoint.

DomLock NumLock: Hi-Fi:

A

B

D

C

F G

I J K LH M N

E

A

B

D

C

F G

I J K LH M N

[1,7]

[1,4] [5,7]

[6,7]

[7,7]

[1,2]

[1,1] [2,2] [3,3] [4,4] [5,5] [6,6]

[5,5]

[1,4]

E

T1

T2

IX

IX

X

IX

X

A node is allowed to get locked in exclusive mode, if the interval of the
node does not overlap with any interval already locked in shared or
exclusive mode.
A node is allowed to get locked in shared mode, if the interval of the
node does not overlap any interval already locked in exclusive mode.
If locking request consists of multiple nodes, lock the immediate
common dominator node of all requested nodes.

Example: Consider a locking request with nodes L, N.
Intention Locks: IX(A), IX(C), IX(F), X(L), IX(G), X(N).
DomLock: Find immediate common dominator.

Lock C[5, 7] in interval based 
hierarchical locking.
Unit locking cost.
Extra node M is getting locked.
It is a trade-off between locking
cost and concurrency cost. 

   

Protocol: 
NumLock addresses the issues of DomLock by balancing the locking cost
and concurrency cost.
The locking request is represented as a set of intervals.
NumLock generates few pareto-optimal locking option according to
locking cost and concurrency cost.
Consider locking request: H, J, M, N.

Locking cost: Regression function for the number of intervals locked.
Size of critical section: Average of critical section sizes in past history.
Contention index: Probability of the lock conflicts because of imprecise
locking by a locking option.
Number of parallel threads.

A

B

D

C

F G

I J K LH M N

[1,7]

[1,4] [5,7]

[6,7]
[1,2]

[1,1] [2,2] [3,3] [4,4] [5,5] [6,6]

[5,5]
[1,4]

E

[7,7]

Cost model for comparing locking options:
 

Hierarchical locking protocols do not support a fine-grained lock on internal
nodes.
Simple bottom-up interval numbering is not capable of identifying an internal
node uniquely. For example, Node L and F.
We propose a new locking protocol which supports both hierarchical and fine-
grained locking semantics.
We present a novel interval numbering which assigns unique interval to every
node in the hierarchy. 

Compatibility Matrix
 

1 2 4 8 16
0

50

100

150

200

250

300

350

400

450
Coarse

Medium

DomLock

NumLock

Number of threads

T
hr

ou
gh

pu
t (

op
er

at
io

ns
/s

ec
on

d)

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

Coarse-grain

Medium-grain

DomLock

NumLock

Percentage of read operations

T
hr

ou
gh

pu
t (

op
er

at
io

ns
/s

ec
on

d)

0 20 40 60 80 100 120 140
0

0.5

1

1.5

2

2.5

3

3.5

4

NumLock
DomLock
Intention Locks
Optimal

Number of Locked Nodes

E
xe

cu
tio

n 
tim

e(
se

co
nd

)

0 2 4 6 8 10 12 14 16 18
0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5
NumLock

DomLock 

Intention Locks

Skewness factor

E
xe

cu
tio

n 
tim

e(
se

co
nd

)

2 4 8 16 32 64
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

HiFi DomLock

IL

Number of nodes locked

E
xe

cu
tio

n
 T

im
e 

(s
e

c)

0 10 20 30 40 50 60 70 80 90 100
0.1

1

10

HiFi DomLock IL

Number of nodes locked 

E
xe

cu
tio

n
 T

im
e 

(s
e

c,
 lo

g
sc

al
e

)

(1,1)

(3,3)

(6,7)

(2,2)

(4,4) Sequence number

Ongoing and Future work:

The development of a hierarchical locking benchmark which provides a common platform for comparison
between different hierarchical and fined-grained locking techniques.

The benchmark supports operations with shared and exclusive accesses to the hierarchy with different
skewness in access patterns.

It allows to chose a certain locking protocol for the execution and provides command-line interface to
configure various parameters such as sizes of critical section, the number of nodes in a lock request etc.

Future work includes the design of a lock manager using concurrent interval trees and evaluate it against
the lock managers in the real-world database systems.  

Interval of B subsumes interval of D
  representing parent-child relation

mailto:rupesh%7D@cse.iitm.ac.in

	Slide 1

