
Finding an optimal value for a parameter that impacts application performance is a

hard problem and often requires repetitive execution and hence incurs wastage of

resources. In this research, we provide a preliminary study which demonstrates

parameter value searching at runtime for better performance. We use APEX

performance measurement library to implement adaptive auto-tuning policy to tune

parcel coalescing parameters based on a sampled counter of HPX runtime system.

Abstract

o A performance measurement library for distributed, asynchronous tasking

models/runtimes. i.e. HPX, but there are others. [1]

o Lightweight measurement (tasks <1ms) and High concurrency.

o Distinction between OS and runtime (HPX) thread context

o Lack of a traditional call stack, task dependency chain instead

o Runtime controlled task switching

o Infrastructure for dynamic feedback and control of both the runtime and the

application

APEX Introspection and Event Listener:

o APEX collects data through “inspectors”: Synchronous uses an event API and

event “listeners”. Asynchronous do not rely on events, but occur periodically based

on Sampled values (counters from HPX).

o It exploits access to performance data from lower stack components: “Health”

data through other interfaces (/proc/stat, /proc/cpuinfo, etc.)

o Profiling listener: Capture parent task relationship, Start, Stop event, etc.

o TAU and OTF2 Listener (postmortem analysis): Synchronously passes all

measurement events to TAU and libotf2 to build an offline profile/trace analysis.

o Concurrency listener (postmortem analysis): Start event: push timer ID on stack

and Stop event: pop timer ID off stack.

APEX Policy Engine :

o Policies are rules that decide on outcomes based on observed state.

o Triggered policies are invoked by introspection API events.

o Periodic policies are run periodically on asynchronous thread.

o All Policies are registered with the Policy Engine with a callback function.

Callback functions define the policy rules. “If x < y then…” – any arbitrary logic.

o Enables runtime adaptation using introspection data through feedback and

control mechanism and engages actuators across stack layers.

o Active Harmony is integrated for adaptive auto-tuning.

APEX

Parcel Coalescing in HPX Adaptive Parcel Coalescing Policy in APEX

o To avoid repetitive execution to search for the best parameter values we defined

a Parcel Coalescing Policy.

o We have the option to trigger the policy periodically or based on an event, for

example: every 5000 messages.

o The application starts with a default/random/user_provided starting values for

the interval and the number of messages to coalesce.

o The callback function for the policy is a call to Active harmony with the APEX

sampled counter value of network overhead of HPX and the current value of

interval and number of messages to coalesce.

o Active harmony observes the counter value to change the value of the two

parameters.

o Below figures represent the impact of the policy on a toy application [2] where

policy is triggered every 5000 message send events between two nodes.

o It shows that It convergence of the two parameters while reducing the network

overhead.

Reference

1.K. A. Huck, A. Porterfield, N. Chaimov, H. Kaiser, A. D. Malony, T. Sterling, and R. Fowler. An autonomic

performance environment for exascale. Supercomputing frontiers and innovations, 2(3), pp.49-66, 2015

2.B. Wagle, S. Kellar, A. Serio and H. Kaiser. Methodology for Adaptive Active Message Coalescing in Task Based

Runtime Systems. International Workshop on Automatic Performance Tuning. IWAPT-2018. (accepted)

Mohammad Alaul Haque Monil1, Bibek Wagle2, Kevin Huck3, Hartmut Kaiser2

1Department of Computer and Information Science , 3Performance Research Laboratory, University of Oregon, Eugene, Oregon.
2School of Electrical Engineering and Computer Science, Louisiana State University, Baton Rouge, Louisiana.

Adaptive auto-tuning in HPX using APEX

Future Work

HPX is a C++ runtime system based on the ParalleX model. The HPX threading

system employs lightweight tasks, known as HPX threads, that are scheduled on top

of operating system threads. In a distributed environment, a locality in HPX is an

abstraction for a physical node. The Active Global Address Space (AGAS) system

in HPX provides a mechanism for addressing any HPX object globally.

o Because of

lightweight tasks in

HPX, it produces fine-

grained communication.

o Parcel coalescing

technique is used in

HPX to reduce

overhead.

o Two parameters:

number of Parcel and

coalescing interval

drives the algorithm.

o Performance depends

on the value of these

parameters.

o In [2], a positive

correlation between task

overhead and overall

execution time is found.

o Network overhead is

the ratio of background

work (network related

overhead) and total task

duration and this is an

HPX counter.

o Parquet Application,

a complex physics

simulation is tested for

different wait time and

number of messages to

coalesce.

o The first graph

represents heat map of

execution time and the

second one represents

average network

overhead.

o Two graphs show

similar heat maps which

show the correlation

between execution time

and network overhead.

o The application was

run many times to find

out this result.

o This finding brings the opportunity for adaptive APEX policy where APEX

policy will find the suitable values for wait time and number message to coalesce

during the application runtime.

Apex policy shows the convergence and reduction of network overhead and

provides the proof of concept of this research. We plan to test this policy for a

couple of real application in large scale. Moreover, we would put more effort to find

an adaptive approach to trigger this policy based on application characteristics.

