Push-Pull on Graphs is Column- and Row-based SpMV Plus Masks
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Figure: Matrix-graph duality. The adjacency matrix A is the
dual of graph G. The matvec is the dual of the BFS graph
traversal. Figure is based on Kepner and Gilbert's book.
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Complexity Results
Operation Expected Cost
Row-  unmasked O(dM) 1
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Table: Four sparse matvec variants and their associated cost,
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_ _ _ Figure: Comparison of our work to other graph libraries (SuiteSparse, CuSha, a baseline push-based BFS, Ligra, and Gunrock)
into the sparse matrix A required. implemented on 1Xx Intel Xeon 4-core E5-2637 v2 CPU and 1x NVIDIA Tesla K40c GPU.
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