
Performance Analysis of DroughtHPC and Holistic HPC
Workflows

Extended Abstract

Yasodha Suriyakumar
Portland State University

P.O. Box 751
Portland, OR 97207-0751

yasodhan@pdx.edu

Karen L. Karavanic
Portland State University

P.O. Box 751
Portland, OR 97207-0751

karavan@pdx.edu

Hamid Moradkhani
University of Alabama

P.O. Box 751
Portland, OR 97207-0751

hmoradkhani@ua.edu

ABSTRACT
We present the results of a performance study of a newly
developed drought prediction code called DroughtHPC. Holistic
view helps to identify bottlenecks and identify areas for
improvement in the software. The significant performance
bottlenecks identified include: the overhead of calls to the VIC
hydrologic model from within a python loop; VIC code structures
that precluded parallelization with OpenMP; and significant file
accesses. We observed challenges in diagnosing the performance
of the code due to the use of an external modeling code in
combination with python, a fairly common scenario in scientific
computation. To address these challenges we designed PPerfG, a
tool for visualizing Holistic HPC Workflows. We have
implemented an initial prototype of PPerfG.

CCS CONCEPTS
• General and reference---Cross-computing tools and techniques--
-Performance

KEYWORDS
Parallel performance, data assimilation, performance visualization

1 INTRODUCTION
This work is part of an effort to develop a more effective

drought prediction code. We report our initial efforts to analyze
the performance of DroughtHPC [1], a drought prediction
application developed at Portland State University. DroughtHPC
improves prediction accuracy for a target geographical area, using
data assimilation techniques that integrate data from hydrologic
models [2,3], and satellite data. Input data includes: soil
conditions, snow accumulation, vegetation layers, canopy cover
and meteorological data. After development of an initial
prototype in python, the goal was to scale the application to do
finer-grained simulations, and also to simulate a larger
geographical area.

The land surface of the target geographical area is modeled as

a grid of uniform cells, we group sets of 25 cells as one job.

For a job that simulates 50 meteorological samples over a one

month time period, the input data size is 144.5 MB, with the
satellite data 132 MB; and the runtime is approximately two hours
with the initial Python prototype.

Figure 1: Holistic workflow diagram of DroughtHPC: Files
accessed in simulation of a single cell, with multiple
meteorological data (Number of samples) and time period
(Number of days). Gray sections refer to Python code, and
blue refers to the VIC hydrologic model. VIC accesses 57 files
to compute each call.

Figure 2: Holistic workflow diagram of DroughtHPC with
updated VIC organization: the code is changed to minimize
forcing data’s movement between storage layers, and reduce
invocation cost.

ICPP, August 2018, Eugene, OR USA Y. Suriyakumar et al.

2

2 Performance Study Results
To evaluate the performance of the DroughtHPC prototype, we

stepped through a series of measurements for single cell, single
node, and multiple node performance. We used a variety of
measurement strategies, spanning from higher level tools such as
the python profiler [6] and gprof [4], to targeted tools such as
dtrace; then we used the PerfTrack performance database [5] to
collect all of the data. The significant performance bottlenecks
identified include: the overhead of calls to the VIC hydrologic
model from within a python loop; and significant file creation,
reads, and writes. Each run of the VIC modeling code inputs and
outputs 25 files; and VIC is called once per sample; the data
assimilation code accesses 200 files for each simulated day. We
are currently evaluating modifications to VIC to reduce the call
overhead and the number of files.

The MPI version of the code is embarrassingly parallel with
the work divided by job; we determined a best fit for our
particular platform to be one job per core, where one job
comprises 25 land cells. A significant improvement was achieved
by configuring the use of local disks for storing the intermediate
files; this reduced contention for the shared NFS file server. In
addition, we have identified several minor modifications to VIC
that will allow each MPI rank to be multithreaded using OpenMP.

3 Holistic HPC Workflows and PPerfG
During our study we observed the challenges of the

performance analysis related to the structure of the code, that
combined a python implementation of data assimilation with
existing hydrologic modeling codes. The data moved between the
two via writing and reading of files. Although this pattern is not
uncommon in scientific applications, it is not easily handled by
any one performance tool. In particular, the performance
bottleneck related to the call pattern of VIC from python was
inefficient but took a good deal of time to isolate.

To address this need we are developing an approach for
performance diagnosis called Holistic HPC Workflows. The goal
is to merge data from different layers of the runtime system (and
therefore frequently different tools) for a single diagnosis. Our
starting point is the development of PPerfG. PPerfG is a
visualization tool for Holistic HPC Workflows. It captures the
data movement behavior between storage layers, and between
different stages of an application. Challenges include determining
the best metrics, and efficient measurement techniques. We show
a sketch of PPerfG in Figures 1 and 2. (Note: these are sketches
and not screenshots.)

4 CONCLUSIONS
As a result of a detailed performance study, we identified

several bottlenecks in our prototype approach. In our single-cell
simulations, the bottleneck is the overhead of the VIC hydrologic
model call from Python. In our parallel single-node version, we
determined a best fit on our platform of one job per logical core;
we explored changes to VIC for Intel Xeon Phi; and we are
developing a version of VIC that eases integration with individual

science codes such as data assimilation. As we scaled to multi-
node simulations with MPI, the performance was dominated by
the filesystem access pattern.

We designed PPerfG for visualizing Holistic HPC Workflows,
in order to conduct analysis across layers of the runtime
traditionally separated into disparate performance tools.

ACKNOWLEDGMENTS
Henry Cooney, Tu Le, Jiaqi Luo and Kristina Frye contributed
ideas and discussions and implemented software used in this
project. This material is based upon work supported by the
National Science Foundation under Grant No. 1539605.

REFERENCES
[1] H. Yan and H. Moradkhani, “Combined assimilation of streamflow and

satellite soil moisture with the particle filter and geostatistical modeling“,
Advances in Water Resources, vol. 94, pp. 364-378, 2016.

[2] University of Washington, “VIC hydrology model“,
http://www.hydro.washington.edu/Lettenmaier/Models/VIC/index-old.shtml,
2014. Accessed: 2018-02-01.

[3] U.S. Department of the Interior - U.S. Geological Survey, “Precipitation
Runoff Modeling System“,
https://wwwbrr.cr.usgs.gov/projects/SW_MoWS/PRMS.html , 2016.
Accessed: 2018-02-01.

[4] S. L. Graham, P. B. Kessler, and M. K. McKusick, “Gprof: A call graph
execution profiler," SIGPLAN Not., vol. 39, pp. 49 - 57, Apr. 2004

[5] Karen L. Karavanic, John May, Kathryn Mohror, Brian Miller, Kevin Huck,
Rashawn Knapp, and Brian Pugh, “Integrating Database Technology with
Comparison-based Parallel Performance Diagnosis: The PerfTrack
Performance Experiment Management Tool”, In Proceedings of the 2005
ACM/IEEE conference on Supercomputing (SC '05).

[6] The Python Standard Library, chapter 27 Debugging and Profiling, available at
https://docs.python.org/3/library/.

