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ABSTRACT 
We present the results of a performance study of a newly 
developed drought prediction code called DroughtHPC. Holistic 
view helps to identify bottlenecks and identify areas for 
improvement in the software. The significant performance 
bottlenecks identified include: the overhead of calls to the VIC 
hydrologic model from within a python loop; VIC code structures 
that precluded parallelization with OpenMP; and significant file 
accesses.  We observed challenges in diagnosing the performance 
of the code due to the use of an external modeling code in 
combination with python, a fairly common scenario in scientific 
computation.  To address these challenges we designed PPerfG, a 
tool for visualizing Holistic HPC Workflows.  We have 
implemented an initial prototype of PPerfG. 
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1 INTRODUCTION 
This work is part of an effort to develop a more effective 

drought prediction code.  We report our initial efforts to analyze 
the performance of DroughtHPC [1], a drought prediction 
application developed at Portland State University.  DroughtHPC 
improves prediction accuracy for a target geographical area, using 
data assimilation techniques that integrate data from hydrologic 
models [2,3], and satellite data.  Input data includes: soil 
conditions, snow accumulation, vegetation layers, canopy cover 
and meteorological data.  After development of an initial 
prototype in python, the goal was to scale the application to do 
finer-grained simulations, and also to simulate a larger 
geographical area. 

 
The land surface of the target geographical area is modeled as 

a grid of uniform cells, we group sets of 25 cells as one job. 
 

 
For a job that simulates 50 meteorological samples over a one 

month time period, the input data size is 144.5 MB, with the 
satellite data 132 MB; and the runtime is approximately two hours 
with the initial Python prototype. 

 

Figure 1: Holistic workflow diagram of DroughtHPC: Files 
accessed in simulation of a single cell, with multiple 
meteorological data (Number of samples) and time period 
(Number of days). Gray sections refer to Python code, and 
blue refers to the VIC hydrologic model. VIC accesses 57 files 
to compute each call.   

 

Figure 2: Holistic workflow diagram of DroughtHPC with 
updated VIC organization: the code is changed to minimize 
forcing data’s movement between storage layers, and reduce 
invocation cost. 
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2 Performance Study Results 
To evaluate the performance of the DroughtHPC prototype, we 

stepped through a series of measurements for single cell, single 
node, and multiple node performance.  We used a variety of 
measurement strategies, spanning from higher level tools such as 
the python profiler [6] and gprof [4], to targeted tools such as 
dtrace; then we used the PerfTrack performance database [5] to 
collect all of the data.   The significant performance bottlenecks 
identified include: the overhead of calls to the VIC hydrologic 
model from within a python loop; and significant file creation, 
reads, and writes. Each run of the VIC modeling code inputs and 
outputs 25 files; and VIC is called once per sample; the data 
assimilation code accesses 200 files for each simulated day. We 
are currently evaluating modifications to VIC to reduce the call 
overhead and the number of files. 

The MPI version of the code is embarrassingly parallel with 
the work divided by job; we determined a best fit for our 
particular platform to be one job per core, where one job 
comprises 25 land cells.  A significant improvement was achieved 
by configuring the use of local disks for storing the intermediate 
files; this reduced contention for the shared NFS file server. In 
addition, we have identified several minor modifications to VIC 
that will allow each MPI rank to be multithreaded using OpenMP.   

3 Holistic HPC Workflows and PPerfG 
During our study we observed the challenges of the 

performance analysis related to the structure of the code, that 
combined a python implementation of data assimilation with 
existing hydrologic modeling codes.  The data moved between the 
two via writing and reading of files. Although this pattern is not 
uncommon in scientific applications, it is not easily handled by 
any one performance tool.  In particular, the performance 
bottleneck related to the call pattern of VIC from python was 
inefficient but took a good deal of time to isolate. 

To address this need we are developing an approach for 
performance diagnosis called Holistic HPC Workflows.  The goal 
is to merge data from different layers of the runtime system (and 
therefore frequently different tools) for a single diagnosis.  Our 
starting point is the development of PPerfG.  PPerfG is a 
visualization tool for Holistic HPC Workflows.  It captures the 
data movement behavior between storage layers, and between 
different stages of an application.  Challenges include determining 
the best metrics, and efficient measurement techniques.  We show 
a sketch of PPerfG in Figures 1 and 2. (Note: these are sketches 
and not screenshots.) 

4 CONCLUSIONS 
As a result of a detailed performance study, we identified 

several bottlenecks in our prototype approach. In our single-cell 
simulations, the bottleneck is the overhead of the VIC hydrologic 
model call from Python. In our parallel single-node version, we 
determined a best fit on our platform of one job per logical core; 
we explored changes to VIC for Intel Xeon Phi; and we are 
developing a version of VIC that eases integration with individual 

science codes such as data assimilation. As we scaled to multi-
node simulations with MPI, the performance was dominated by 
the filesystem access pattern.   

We designed PPerfG for visualizing Holistic HPC Workflows, 
in order to conduct analysis across layers of the runtime 
traditionally separated into disparate performance tools.    
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