
Performance Analysis of DroughtHPC and Holistic HPC
Workflows*
Extended Abstract

Yasodha Suriyakumar
Portland State University

P.O. Box 751
Portland, OR 97207-0751

yasodhan@pdx.edu

Karen L. Karavanic
Portland State University

P.O. Box 751
Portland, OR 97207-0751

karavan@pdx.edu

Hamid Moradkhani
University of Alabama

P.O. Box 751
Portland, OR 97207-0751

hmoradkhani@ua.edu

ABSTRACT
We present the results of a performance study of a newly
developed drought prediction code called DroughtHPC. Holistic
view helps to identify bottlenecks and identify areas for
improvement in the software. The significant performance
bottlenecks identified include: the overhead of calls to the VIC
hydrologic model from within a python loop; VIC code structures
that precluded parallelization with OpenMP; and significant file
accesses. We observed challenges in diagnosing the performance
of the code due to the use of an external modeling code in
combination with python, a fairly common scenario in scientific
computation. To address these challenges we designed PPerfG, a
tool for visualizing Holistic HPC Workflows. We have
implemented an initial prototype of PPerfG.

CCS CONCEPTS
•

KEYWORDS
Parallel performance, data assimilation, performance visualization

ACM Reference format:

1 INTRODUCTION
This work is part of an effort to develop a more effective drought
prediction code. We report our initial efforts to analyze the
performance of DroughtHPC [1], a drought prediction application
developed at Portland State University. DroughtHPC improves
prediction accuracy for a target geographical area, using data
assimilation techniques that integrate data from hydrologic
models, and satellite data. Input data includes: soil conditions,
snow accumulation, vegetation layers, canopy cover and
meteorological data. After development of an initial prototype in
python, the goal was to scale the application to do finer-grained
simulations, and also to simulate a larger geographical area.

The land surface of the target geographical area is modeled as a
grid of uniform cells, with groups of 25 cells collected as one job.

For a job that simulates 50 meteorological samples over a one
month time period, the input data size is 144.5 MB, with the
satellite data 132 MB; and the runtime is approximately two hours
with the initial Python prototype.

Figure 1: Holistic workflow diagram of DroughtHPC: Files
accessed in simulation of a single cell, with multiple
meteorological data (Number of samples) and time period
(Number of days). Gray sections refer to Python code, and
blue refers to the VIC hydrologic model. VIC accesses 57 files
to compute each call.

Figure 2: Holistic workflow diagram of DroughtHPC with
updated VIC organization: the code is changed to minimize
forcing data’s movement between storage layers, and reduce
invocation cost.

ICPP, August 2018, Eugene, OR USA Y. Suriyakumar et al.

2

2 Holistic HPC Workflows and PPerfG
During our study we observed the challenges of the performance
analysis related to the structure of the code, that combined a
python implementation of data assimilation with existing
hydrologic modeling codes. The data moved between the two via
writing and reading of files. Although this pattern is not
uncommon in scientific applications, it is not easily handled by
any one performance tool. In particular, the performance
bottleneck related to the call pattern of VIC from python was
inefficient but took a good deal of time to isolate.

To address this need we are developing an approach for
performance diagnosis called Holistic HPC Workflows. The goal
is to merge data from different layers of the runtime system (and
therefore frequently different tools) for a single diagnosis. Our
starting point is the development of PPerfG. PPerfG is a
visualization tool for Holistic HPC Workflows. It captures the
data movement behavior between storage layers, and between
different stages of an application. Challenges include determining
the best metrics, and efficient measurement techniques. We show
a sketch of PPerfG in Figures 1 and 2. (Note: these are sketches
and not screenshots.)

4 CONCLUSIONS
As a result of a detailed performance study, we identified several
bottlenecks in our prototype approach. In our single-cell
simulations, the bottleneck is the overhead of the VIC hydrologic
model call from Python. In our parallel single-node version, we
determined a best fit on our platform of one job per logical core;
we explored changes to VIC for Intel Xeon Phi; and we are
developing a version of VIC that eases integration with individual
science codes such as data assimilation. As we scaled to multi-
node simulations with MPI, the performance was dominated by
the filesystem access pattern.

We designed PPerfG for visualizing Holistic HPC Workflows, in
order to conduct analysis across layers of the runtime traditionally
separated into disparate performance tools.

ACKNOWLEDGMENTS
Henry Cooney, Tu Le, and Jiaqi Luo contributed ideas and
discussions and implemented software used in this project. This
material is based upon work supported by the National Science
Foundation under Grant No.1539605.

REFERENCES
[1] H. Yan and H. Moradkhani, “Combined assimilation of streamflow and satellite

soil moisture with the particle filter and geostatistical modeling“, Advances in
Water Resources, vol. 94, pp. 364-378, 2016.

[2] University of Washington, “VIC hydrology model“,
http://www.hydro.washington.edu/Lettenmaier/Models/VIC/index-old.shtml,
2014. Accessed: 2018-02-01.

[3] U.S. Department of the Interior - U.S. Geological Survey, “Precipitation Runoff
Modeling System“,
https://wwwbrr.cr.usgs.gov/projects/SW_MoWS/PRMS.html , 2016. Accessed:
2018-02-01.

[4] S. L. Graham, P. B. Kessler, and M. K. McKusick, “Gprof: A call graph
execution profiler," SIGPLAN Not., vol. 39, pp. 49 - 57, Apr. 2004

[5] Karen L. Karavanic, John May, Kathryn Mohror, Brian Miller, Kevin Huck,
Rashawn Knapp, and Brian Pugh, “Integrating Database Technology with
Comparison-based Parallel Performance Diagnosis:
The PerfTrack Performance Experiment Management Tool”, In Proceedings of
the 2005 ACM/IEEE conference on Supercomputing (SC '05).

