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High-performance numerical frameworks rely on mature 1. For small scales, use Machine Learning (ML) model [2] to

and highly optimized numerical packages (e.g.: PETSc [1]) suggest solvers.

for the numerical solution of nonlinear partial

differential equations. Because of the large and growing  to generate a communication-based solver ranking.

3. For large scales, combine the ML model and the
communication-based ranking [3].

number of valid solution choices, the selection of
particular solver configuration is becoming increasingly

challenging. 4. Generate solver recommendations.
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Solver recommendations

MATRIX FEATURES

» Characteristics of the linear systems

GOAL

Enable users to choose solver configurations that

are likely to perform well for a given linear system. Categories: Structural, size-based, eigenvalues.

» Examples: No. of non-zeros, matrix norm.
* Input for the convergence model.

CONTRIBUTIONS

» An accurate generalizable machine learning-based

Libraries used for computing features: Anamod, PETSc.

FEATURE COMPUTATION

workflow for classitying arbitrary sparse linear systems.
* A parallel scaling model based on analytical » Matrix-full: Entire matrix is stored.
communication estimates for systems that require » Matrix-free: Matrix is not stored explicitly, instead
large scale distributed memory resources. matrix-vector product approximations are used.

» A comparatively less expensive set of features of the
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PROBLEM STATEMENT APPROACH SMALL SCALE SOLUTION

2. Analyze the communication overheads of Krylov methods
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A low-overhead technique to select solution methods
effectively, by training the ML model and suggesting
based on the selected input problem characteristics.

LARGE SCALE PARALLEL SOLUTION

Quantify inter-process

Inspect solvers S
communication

Compare comm. cost

among solvers

A new technique for modeling performance that
captures performance variation at different parallelism
scales and generating ranked list of solver suggestions.

CONCLUSION

» Capture the convergence behavior using ML model.

 Capture the parallel overhead based on communication.

» Demonstrate their effectiveness in PDE based
applications.

» Matrix-free approach for feature computation.

* Enable solver recommendations for sparse linear
systems at different scales.
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