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ABSTRACT
Scientific and engineering applications often involve the solution of
large sparse linear systems; hence, scalable preconditioned iterative
methods are a popular choice. There are many software libraries
that offer a variety of preconditioned Newton-Krylov methods
for solving sparse problems. However, the selection of an optimal
Krylov method remains to be user’s responsibility. This document
outlines the technique we propose for the optimal solver method
suggestions based on the problem characteristics and the amount
of communication involved in the Krylov methods.
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Problems from a variety of domains can be represented in the form
of linear systems of equations. Such domains include astrophysics,
computational fluid dynamics, thermodynamics among many oth-
ers, e.g. [3, 6]. The solution of large linear systems is a fundamental
component of many scientific and engineering applications, and
high-performance numerical frameworks rely on advanced and
optimized packages like PETSc [1] for the solution of such systems.
For solving these equations, there are two main approaches: di-
rect and iterative solver techniques. Direct solvers find a solution
close to the exact solution of the problem by using a limited set
of operations. Iterative methods provide an approximation of the
solution by starting with an initial guess and updating the solu-
tion approximations over multiple iterations. Linear systems can
be classified as dense or sparse, depending on the number of zero
elements present in the coefficient matrix. Systems with a large
number of zero-valued elements are referred to as sparse linear
systems. The second class of linear systems are dense linear systems
where majority of the elements have non-zero values.
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In many applications, the solution of large sparse linear systems
is a key computation whose performance dominates the overall
solution time. For example, applications that solve nonlinear partial
differential equations through numerical approximations such as
the Newton-Krylov family of methods, spend most of their time in
the iterative linear system solution, which can be performed by any
of the large number of preconditioned Krylov methods available.
While their functionalities of these methods are equivalent, their
performance (how fast a solution is found) varies greatly depending
on the characteristics of the input linear system. This proliferation
of available solution methods makes the task of selecting a specific
algorithm performs well extremely challenging.

My research enables computer and computational scientists to
choose a well-performing solution technique for their problems
that can be represented as linear systems. While ideally we would
like to find the optimal method, in practice, this is infeasible due
to the problem size and complexity. Hence, I investigate machine
learning and other modeling approaches to determine what solvers
are likely to perform significantly better than the majority of so-
lution methods for a given problem. We use PETSc, which offers
a variety of scalable solvers and preconditioners, that can be used
for solving scientific applications modeled by partial differential
equations. For enabling well-performing solver selection, we have
defined a technique for selecting solution methods with minimal
or no input from the user. In this document, we illustrate how this
approach is used in practice for solver selection.

1 APPROACH OVERVIEW
We model two aspects of the performance of Krylov methods: con-
vergence behavior and communication overhead. Our ML model
captures the convergence behavior of the Krylov methods via a
supervised machine learning (ML) approach. Our analytical ap-
proach characterizes the communication performed in the Krylov
methods to quantify their scalability. The convergence model (ML
model) can be used as a standalone for getting solver suggestions at
moderate scale. For larger processor counts, the ML model results
can be improved by combining it with the communication model.
In this section, we describe the two models and how to combine
them.

1.1 Convergence Model (ML model)
We classify different Krylov methods based on their performance
using several supervised ML techniques. For training the model, we
use the University of Florida matrices [2] with the right hand side
vector with all elements set to 1. We solve each linear system with
multiple solver-preconditioner combinations and capture the solver
timing. We compute various features of these systems such as the
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trace, or row/column value variability. These properties along with
the solver-preconditioner combination, together form the training
set. Next, we build a binary classifier that labels solvers as “good”
or “bad” based on their computation time. We apply different ML
algorithms [4] to classify solvers and perform supervised learning.
We validate the model by performing 10-fold cross validation and a
66 − 34% train-test validation. Finally, we select the algorithm that
performs the best and classifies solver performance most effectively.

One of the most expensive steps in the convergence modeling is
the feature collection. For reducing its cost, we identify the most
relevant features, and rebuild the ML classifier using only the re-
duced feature sets. The output of the convergence model is a list of
“good” solver recommendations. Figure 1 shows the different stages
involved in the convergence model.

Figure 1: Convergence model for solver classification.

1.2 Communication Model
For problems that require high levels of parallelism (> 1000 cores),
we propose a method for modeling the performance of parallel
preconditioned Krylov methods. With this model, we analyze the
solver and preconditioner algorithms provided by PETSc identifying
the operations that perform inter-process communication for each
iteration. Next, we count the number of times these operations
are called for each algorithm. We only focus on the iteration and
do not consider operations in setup or I/O functions which are
outside of the Krylov solver iteration. In this model, we analyze
communication alone, since solution time is modeled using the ML
model. We exclude the operations that are common for all solvers
and preconditioners.

Figure 2: Communication model for solver ranking.

We use the analytical ranking of preconditioned Krylov methods
to address the challenge of modeling the scalability of algorithms.
We validate the accuracy of the model by applying it on a numer-
ical simulation of driven fluid flow in a two dimensional cavity.
Figure 2 shows the stages in the communication model. The result

is a communication-wise ranking for the preconditioned and non-
preconditioned cases. The solver ranking list obtained from this
model, is combined with the ML-generated solver list to find the
intersection, which generates a ranked list of “good” solvers.

1.3 Model Usage
We make a solver suggestion based on the ML approach and the
communication based approach together, because either of the
models as a standalone does not capture both the computation and
communication aspects. For modeling the solvers scalability for
large processor counts, collecting the training data for the conver-
gence model is prohibitively expensive. In such cases, we model the
computation aspect with the ML model and parallel overhead with
the communication-based model. This is achieved by applying the
ML-based approach in combination with the communication-based
performance model to enable solver recommendations at different
scales of parallelism.

2 MATRIX-FREE FEATURE COMPUTATION
An aspect of our research focuses on a matrix-free approach for
selecting iterative Krylov methods. Sparse systems use less memory
than dense systems because we store only the non-zero elements
of the sparse systems. When all the matrix elements are stored
and available at any given time, various features of the matrix can
be computed, such as the number of rows, matrix diagonal, and
others. For an extremely large matrix, storing it and performing
matrix operations can be very expensive due to memory cost and
computation time.

Krylov methods can, however, solve the linear system by approx-
imating matrix-vector products without explicitly assembling the
matrix [5], thus supporting even larger problems.

3 CONCLUSION
This research enables iterative solver recommendations for sparse
linear systems by modeling the convergence behavior and the par-
allel overhead. When solving large sparse linear systems, users
can rely on the the ML classifier recommendations for moderate
scales of parallelism (hundreds of tasks). For cases where modeling
both computation and communication is useful, we combine the
ML suggestions by finding the top-ranked methods (in terms of
communication overhead) within that solver set.
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