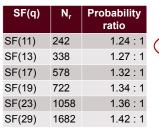


RESEARCH ABSTRACT ON TOPOLOGY AND ROUTING IN LARGE-SCALE INTERCONNECT NETWORKS

Shafayat Rahman (rahman@cs.fsu.edu)

As a PhD student in the FSU CS EXPLORER (EXtreme-scale comPuting, modeLing, netwORking & systEms Research) lab under the supervision of Dr. Xin Yuan, my research activity revolves around the analysis, improvement and performance evaluation of a number of topology and routing schemes widely used in the field of high performance computing.

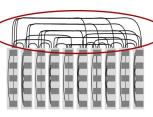

Load-Balanced Slim Fly Networks

Slim Fly:

- A recently proposed diameter-two topology
- Reaches within 88% of the optimum degree-diameter graph

Our contributions:

- Analyzed link-usage probability
- Showed that inter-plane links are more likely to be used for common traffic patterns
- Proposed two strategies to ensure load-balance in Slim Fly networks



Solution 1: b/w provisioning:

- Increase the b/w of the interplane links proportionally
- + Completely eliminates loadimbalance
- Implementation issues.

Solution 2: Weighted-VLB routing:

- Divert some traffic from the over-used links to the underused ones
- So essentially, assign "weights" to paths
- More feasible implementation
- Reduces load-imbalances, but
- does not remove it completely.

UGAL

Original Weighted(1.5,1.75,1.75,1,1)

UGAI

Avg max throughput for permutation pattern

Avg max throughput for permutation patter

Dragonfly Design Space: Link Arrangement and Path Diversity

- Routers are grouped together in clusters
- Clusters are connected to form a diameter-three topology
- If each group has **a** routers, and each router has **h** global connections, then maximum number of groups in the system,

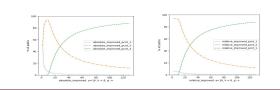
g_{max} = a*h + 1

Different Dragonfly arrangements:

Open research questions:

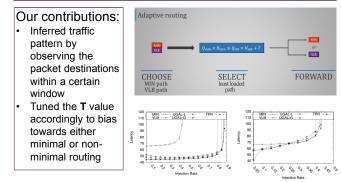
What if g < g_{max}?

- What to do with the extra ports?
- Which group should be connected to which port?


Can randomly assigning ports help in topology creation? • Fully random connections?

- Some greedy heuristic?
- Reinforcement learning?

What are some good performance metrics?


How do the minimum-path lengths change with increasing group number, g?

Can they be exploited in routing?

Traffic-Pattern Based Adaptive Routing for Dragonfly

Investigated the performance of adaptive routing in the Dragonfly used in Cray Cascade

Performance Modeling Studies

Modeling UGAL on the Dragonfly Topology

 Modeled the UGAL routing over Dragonfly topology to get a better theoretical understanding on how the routing works

Throughput Models of Interconnection Networks: the Good, the Bad, and the Ugly

• Evaluated a number of commonly-used throughput models and identified similar and contradictory trends in their performance

A Comparative Study of Topology Design Approaches for HPC Interconnects

 Studied the performance characteristics of a number of topologies that provide either low diameter or high path diversity

inates load-

0.9

0.8

0.8

0.3

0.6

0.5

0.4