Middleware for Data Intensive Analytics on HPC

Ioannis Paraskevakos
Rutgers, The State University of New Jersey
Piscataway, New Jersey, USA
i.paraskev@rutgers.edu

ACM Reference Format:

Ioannis Paraskevakos. 2018. Middleware for Data Intensive Analytics on
HPC. In Proceedings of 47th International Conference on Parallel Processing,
August 13-16, 2018, University of Oregon, Eugene, Oregon, USA (ICPP). ACM,
New York, NY, USA, 2 pages. https://doi.org/

1 EXTENDED ABSTRACT

Many scientific applications have immense amounts of data which
require analysis. The execution time of the analysis highly depends
on data volume. In addition, based on the application, the analysis
may require execution either using same or different resources
as the simulations. Thus, there is a high demand for an efficient
and scalable solution which provides resource management and
workflow abstractions for analyzing data on distributed resources,
like High Performance Computing (HPC) resources.

1.1 Scientific Drivers

Molecular Dynamics (MD) simulations are significant consumers
of supercomputing cycles, producing immense amounts of data. A
typical pusec MD simulation of physical system of O(100k) atoms
can produce from O(10) to O(1000) GBs of data [2]. In addition to
being the prototypical HPC application, there is increasingly a need
for the analysis to be integrated with simulations and drive the next
stages of execution (analysis-driven- simulation) [1]. The analysis
phase must be performed quickly and efficiently in order to steer
the simulations.

Geo-sciences acquire satellite imagery data for understanding
biological, hydrological and geological functioning of the polar re-
gions. In addition, efficient algorithms that analyze high-resolution
images is available. Although, as the data sizes for analyzing large-
scale regions, like the Antarctic, increase, the computational require-
ments are becoming a limitation. As a result, it becomes necessary
to use efficient and parallel frameworks to analyze and classify
high-resolution satellite imagery using distributed resources.

1.2 Current & Future Challenges
There are three major challenges that this research tries to address:

1. Provide abstractions that capture common scientific analysis
patterns and be science domain independent. A preliminary
comparison between the data analysis requirements and patterns
of the use cases in 1.1 suggests that they are fairly similar.
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2. Provide a set of extensible and pluggable abstractions that op-
erate on distinct layers from the application layer down to the
resource interface. Scientific use cases evolve constantly. Having
distinct layers of abstractions that are extensible and pluggable
will allow the middleware to evolve without having to engineer
a full stack solution.

3. Provide APIs that are not software stack specific. There is, al-
ready, a plethora of frameworks and software stacks (Apache
Stack, PyData) that support data intensive applications [3]. The
provided APIs should be able to interface with frameworks that
provide the required features seamlessly and with the least pos-
sible engineering effort.

1.3 Proposed Approach

To address the challenges in 1.1 we propose to use the Building
Blocks [8] approach. Each block is characterized by four design prin-
ciples: (1) Self-sufficiency, (2) Interoperability, (3) Composability,
and (4) Extensibility

In addition, the Building Block approach identifies four func-
tional levels: Level 4. Application Description: Describes the
requirements and semantics of the application, Level 3. Workload
Management System: Expresses the applications as workloads,
Level 2. Task Runtime System: describes how the tasks of the
workload are executed, and Level 1. Resources
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Figure 1: Proposed approach four functional layers, along
with their respective building blocks
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Figure 1 shows graphically the proposed approach. Each layer
has one or more building blocks. Level 1 is comprised by computing
resources such as High Perfomance Computing resources (HPCs),
Clouds and Grids. Level 2 shows the building blocks that describe
how the tasks will be executed. Dask [7], RADICAL-Pilot [4], and
Spark [9] are task execution engines. MIDAS stands for MIddleware
for Data-intensive Applications and Science. MIDAS supports data-
intensive analysis applications in conjuction with traditional HPC
applications.

Level 3 shows the building blocks that express the applications
as workloads. ICEBERG will provide the building block to describe
and support image analytics for geo-sciences. MDAnalysis [5, 6]
provides several algorithms for MD simulation data analysis. Some
of these capabilities will be extended by using MIDAS. Level 4 has
the application descriptions.

1.4 Preliminery results

MIDAS has been used for two distinct application and analysis:
First, it supports data-intensive analysis applications in conjunc-
tion with traditional HPC applications. It has enabled the analysis
of biophysical simulations systems that were not feasible before.
Second, MIDAS is being used to analyze high-resolution satellite
imagery and derived products (such as digital elevation models). In
addition to large volumes of data involved, the analysis of images
is computationally intensive and requires high-performance and
distributed resources.
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Figure 2: Bio-Molecular Dynamics Use case: Leaflet finder
performance using some capabilities offered by MIDAS

A bio-molecular dynamics application, called Leaflet Finder [5],
was implemented via the capabilities MIDAS offers. The Leaflet
Finder is a graph-based algorithm to detect continuous lipid mem-
brane leaflets in a MD simulation. Figure 2 shows the characteriza-
tion of those capabilities.
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Figure 3: Polar Imagery Use Case: Performance of Water-
shed algorithm using MIDAS capabilities

In addition, an image analysis algorithm was implemented using
capabilities that MIDAS provides. This algorithm was characterized
using data from polar sciences. Figure 3 shows the performance

characterization of this algorithm in strong and weak scaling.
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