
Toward a Multi-GPU Implementation of the Modular Integer
GCD Algorithm: Extended Abstract

KENNETH WEBER
University of Mount Union

Department of Computer Science
Alliance, OH, USA

weberk@mountunion.edu

JUSTIN A. BREW
University of Mount Union

Alumnus, Department of Computer Science
Alliance, OH, USA

jbrew5662@gmail.com

ABSTRACT
The modular integer greatest common divisor (GCD) algorithm [9]
holds promise to provide superior performance to sequential al-
gorithms on extremely large input. In order to demonstrate the
efficacy of the algorithm, an implementation on a system with
multiple Graphics Processing Units (GPUs) is proposed, based on
a single-GPU implementation described herein. The implementa-
tion’s performance is analyzed to predict the size of input needed to
demonstrate superior performance when compared to one popular
sequential implementation of the integer GCD.

CCS CONCEPTS
• Theory of computation→ Massively parallel algorithms;

KEYWORDS
GPU, Integer GCD

ACM Reference Format:
KENNETH WEBER and JUSTIN A. BREW. 2018. Toward a Multi-GPU Im-
plementation of the Modular Integer GCD Algorithm: Extended Abstract.
In Proceedings of 47th International Conference on Parallel Processing (ICPP
2018). ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/nnnnnnn.
nnnnnnn

1 INTRODUCTION
Euclid’s algorithm to compute the greatest common divisor (GCD)
of two integers is one of the oldest algorithms known [7, sect. 4.5.2].
His algorithm describes a process that is inherently sequential, as
are most algorithms typically used to compute the GCD, including
those currently used by the the GNU Multiprecision Arithmetic Li-
brary (GMP) [6]. The modular integer GCD algorithm [9] is unique
in that it employs a modular representation for the integer inputs
and intermediate results in order to provide a way to parallelize the
task. What follows describes an implementation [1] of the modular
algorithm on a single NVIDIA graphics processing unit (GPU) [5]
that could be used as a foundation for a multinode implementation
providing superior performance on very large input values.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPP 2018, August 13-16, 2018, Eugene, OR USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 ALGORITHM OVERVIEW
The implementation of the modular algorithm described here uses
the variant of the original given in Figure 1. It estimates the number
of moduli that will be needed and checks to see whether there will
be enough moduli to finish the computation at each iteration of
the reduction loop. It also incorporates corrections to two errors in
Steps MGCD3.2 and MGCD4 of the original algorithm [9].

Input: Positive integers U and V , with U ≥ V
Output: gcd(U , V)

Constants :L = integer ≥ 2
M = set of primes in the range (2L−1, 2L)
CL = 1.6 − 0.015 · L

1 Nu ← ⌊log2U ⌋ + 1, Nv ← ⌊log2V ⌋ + 1
2 NQ ← ⌈CL · Nu/log10 Nu ⌉
3 if NQ > | |M | | then return fail
4 Q ← the set of NQ largest elements ofM
5 forall q ∈ Q do
6 [uq, vq] ← [U mod q, V mod q]
7 tq ← if vq = 0 then∞ else uq/vq mod q
8 end
9 [p, b] ← [element q of Q for which |tq | is minimal, tq]

10 repeat // Reduction loop
11 Q ← Q − {p }
12 forall q ∈ Q do
13 [uq, vq] ← [vq, (uq − b · vq)/p mod q]
14 tq ← if vq = 0 then∞ else uq/vq mod q
15 end
16 NQ ← NQ − 1, [Nu, Nv] ← [Nv , Nv − L + ⌊lgb ⌋]
17 if NQ (L − 2) ≤ Nu then // Can’t recover G
18 return fail
19 [p, b] ← [element q of Q for which |tq | is minimal, tq]
20 until b = ∞
21 k ← 1, G ← 0
22 [p1, д1] ← [element q of Q with priority to uq , 0, uq]
23 repeat // Recover mixed-radix representation
24 Q ← Q − {pk }
25 forall q ∈ Q do uq ← (uq − дk)/pk mod q
26 k ← k + 1
27 [pk , дk] ← [element q of Q with priority to uq , 0, uq]
28 until дk = 0
29 for i = k − 1 downto 1 do G ← дi + pi G
30 return |G | // Return standard representation

Figure 1: Modular algorithm, as implemented

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ICPP 2018, August 13-16, 2018, Eugene, OR USA KENNETH WEBER and JUSTIN A. BREW

64 128 192 256 320

100

200

300

400

500

Input size (Kibit)

Ex
ec
ut
io
n
tim

e
(m

s)

GeForce GTX 980
Tesla P100
GeForce GTX 1080
Tesla V100
T = 0.46N + 1.17
Xeon E5-2620

Figure 2: Modular GCD times vs GMP GCD times

3 IMPLEMENTATION DETAILS
In this section we provide a few key implementation details.

Although division is slow, NVIDIA GPUs support native 32-bit
integer operations [5]. Therefore, the implementation uses L = 32 to
get as much benefit from hardware support as possible. A technique
provided by Cavagnino and Werbrouck in [2] allows us to compute
the remainder when dividing a 64-bit value by a 32-bit modulus via
64-bit multiplication, rather than 64-bit division. This is significantly
faster than the code generated by the C++ compiler for the 64-bit
remainder operation, but restricts us to the use of only 68 million of
the 98 million 32-bit primes. By requiring somewhat more work per
modulus at runtime [2, sect. 2.4], all 32-bit primes could be used.

The global minimum needed on lines 9 and 19 of Figure 1 is
performed by combining two levels of reduction operations using
warp shuffle [5, Appendix B.15] in each thread block, together with
synchronization among the blocks; global “any” (lines 22 and 27)
combines the __ballot_sync function [5, Appendix B.13] with
block synchronization. It was originally necessary to implement our
own global barrier to synchronize thread blocks. NVIDIA recently
introduced Cooperative Groups [5, Appendix C], which provide a
reliable means to synchronize among thread blocks. Cooperative
Groups are not available on some NVIDIA GPUs, and appear to be
slower than the global barrier on others, so results are not reported
for the version of the implementation that uses Cooperative Groups.

4 RESULTS
Figure 2 displays the performance of the implementation on several
NVIDIA GPUs. Ten pairs of inputs were randomly generated for
each size reported, and the average execution time for the ten pairs
is plotted. Times recorded were actual physical times needed to
compute the values; care was taken to reduce, as much as possible,
any system activity that may be included in the measurements.
A least-squares fit of the first 10 execution times for the Tesla
V100 GPU, the most powerful device (and having the most recent
architecture) of those included in the graph, is also provided.

5 CONCLUSION
Given enough processing elements, the modular GCD algorithm
should exhibit linear behavior [9]. The GCD algorithms used by
GMP for large input are essentiallyO(N 1+ϵ logN) for a fairly large
value of ϵ [6, section 15.3.3], so—given enough processing elements—
a multinode implementation of the modular GCD algorithm should
be faster than the GMP implementation for very large input.

It can be seen from Figure 2 that the execution times exhibit lin-
ear behavior up to the point at which the device becomes saturated
by the number of threads it must support, which appears at input
sizes of 160 Kibit for the Tesla V100. Using the linear least-squares
fit displayed in the figure, we predict that the modular algorithm
will be faster than the GMP implementation for inputs of over 250
million bits, at which value GMP GCD took 121 seconds for one pair
of 250 million bit inputs, and our extrapolation projects a running
time of around 112 seconds on a hypothetical multinode system
with enough GPUs of the same type as the projection is based
on, and with fast enough communication between GPUs. With 68
million usable 32-bit moduli, a multi-GPU implementation should
be able to handle input sizes of up to 529 million bits, based on
the formula for NQ from line 2 of Figure 1. Although this projec-
tion encourages further investigation, only an actual multinode
implementation of the modular algorithm will allow a definitive
assessment of its efficacy.

6 FUTUREWORK
We plan to develop a multi-GPU implementation on the Owens
supercomputer at the Ohio State University [4] with the goal of
demonstrating efficacy on a larger system, such as the Summit
supercomputer at the Oak Ridge National Laboratory [8].

ACKNOWLEDGMENTS
The authors thank the Ohio Supercomputer Center [3] for access
to a Tesla P100 GPU on the Owens system, as well as Anthony
Rizzo for his contributions to initial software development, NVIDIA
Corporation for the donation of a Tesla C2070 GPU, and Seneca Data
Distributors (a subsidiary of Arrow Electronics) for the donation of
computer time for testing of early versions of the project.

REFERENCES
[1] Justin Brew and Kenneth Weber. 2018. ModGCD-OneGPU. (2018). Retrieved

May, 2018 from https://github.com/MountUnionComputerScienceDepartment/
ModGCD-OneGPU/releases/tag/v1.2-alpha

[2] D. Cavagnino and A. E. Werbrouck. 2008. Efficient Algorithms for Integer Division
by Constants Using Multiplication. Comput. J. 51, 4 (2008), 470–480.

[3] Ohio Supercomputer Center. 1987. Ohio Supercomputer Center. http://osc.edu/ark:
/19495/f5s1ph73. (1987).

[4] Ohio Supercomputer Center. 2016. Owens supercomputer. (2016). http://osc.edu/
ark:/19495/hpc6h5b1

[5] CUDA C Programming Guide 2018. CUDA C Programming Guide.
(2018). Retrieved April 4, 2018 from http://docs.nvidia.com/cuda/pdf/CUDA_
C_Programming_Guide.pdf version 9.1.85.

[6] Torbjörn Granlund. 2016. GNU MP: The GNU Multiple Precision Arithmetic Library
(6.1.2 ed.). Free Software Foundation.

[7] Donald E. Knuth. 1997. The Art of Computer Programming (3rd ed.). Vol. 2: Seminu-
merical Algorithms. Addison-Wesley, Reading, Massachusetts.

[8] Summit ORNL 2018. System User Guide: Summit. (2018). Retrieved March 6,
2018 from https://www.olcf.ornl.gov/for-users/system-user-guides/summit/

[9] KennethWeber, Vilmar Trevisan, and Luiz Felipe Martins. 2005. AModular Integer
GCD Algorithm. Journal of Algorithms 54, 2 (February 2005), 152–167.

https://github.com/MountUnionComputerScienceDepartment/ModGCD-OneGPU/releases/tag/v1.2-alpha
https://github.com/MountUnionComputerScienceDepartment/ModGCD-OneGPU/releases/tag/v1.2-alpha
http://osc.edu/ark:/19495/f5s1ph73
http://osc.edu/ark:/19495/f5s1ph73
http://osc.edu/ark:/19495/hpc6h5b1
http://osc.edu/ark:/19495/hpc6h5b1
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://www.olcf.ornl.gov/for-users/system-user-guides/summit/

	Abstract
	1 Introduction
	2 Algorithm Overview
	3 Implementation details
	4 Results
	5 Conclusion
	6 Future work
	Acknowledgments
	References

