
RESEARCH POSTER PRESENTATION DESIGN © 2015

www.PosterPresentations.com

Breadth First Search (BFS) is a key graph searching algorithm for

many graph computing applications. However, memory divergence

harms GPU’s efficiency dramatically due to the irregular memory

access pattern of BFS. Memory prefetching can fetch useful data

into on-chip memory in advance, but current prefetchers cannot

deal with data-dependent memory accesses. In this paper, we

propose DSAP, a data structure-aware prefetcher on GPU that

generates prefetching requests based on the data-dependent

relationship between graph data structures and the memory access

pattern of BFS. Also, we introduce an adaptive prefetching depth

management to make DSAP more efficient according to the limited

on-chip memory storage. We evaluate six datasets from three

different kinds of applications and DSAP can achieve geometrical

mean speedups of 1.28x, up to 1.48x, compared to the GPU

without using prefetching.

ABSTRACT

Introduction 

A. Prefetching Operations

According to the traditional BFS algorithm, most of memory

accesses are data-dependent. For example, accesses to vertex list is

dependent on the vertex id fetched from the work list. However,

the data dependent relationship and the memory access pattern are

fixed and sequential, therefore prefetchers can easily copy its

memory access pattern and generate prefetching requests

according its data dependent relationships, with some explicit

graph data structure information. Therefore, prefetchers need to

monitor the memory accesses to decide which data to prefetch

next. Tab. 1 shows how DSAP prefetches all the data of one

iteration by monitoring memory accesses to graph data structures.

Data Structure-Aware Prefetching

A. Methodology

We implement the GPU with the prefetching unit on GPGPUSim simulator 

[4]. And the parameters of the simulator are based on GTX-480, listed in 

Tab.2. The datasets we test are from the SNAP datasets [3] and their features 

are listed in Tab. 3.

Evaluation

Figure 2 Speedups of DSAP with different UTs for six datasets

REFERENCES

1. Lee, J., Lakshminarayana, N. B., Kim, H., and Vuduc, R. 2010. 

Many-thread aware prefetching mechanisms for GPGPU 

applications. In Microarchitecture (MICRO), 2010 43rd Annual 

IEEE/ACM International Symposium on (pp. 213-224). IEEE.

2. Oh, Y., Kim, K., Yoon, M. K., Park, J. H., Park, Y., Ro, W. W., 

and Annavaram, M. 2016. APRES: improving cache efficiency 

by exploiting load characteristics on GPUs. ACM SIGARCH 

Computer Architecture News, 44(3), 191-203.

3. https://snap.stanford.edu/data/index.html

4. Bakhoda, A., Yuan, G. L., Fung, W. W., Wong, H., and Aamodt, 

T. M. 2009. Analyzing CUDA workloads using a detailed GPU 

simulator. In Performance Analysis of Systems and Software, 

2009. ISPASS 2009. IEEE International Symposium on (pp. 

163-174). IEEE.

Breadth First Search (BFS) has been used in many graph

computing algorithms, such as Page Rank, Single Source Shortest

Path (SSSP) and other big data applications. As the input graph is

increasingly larger, BFS becomes a performance bottleneck for

most applications. The irregular memory access pattern of BFS is

the primary reason that impacts its performance on GPU. When

GPU processes these irregular memory accesses, the latency to

fetch the entire data of a load instruction will be much longer than

that of regular memory accesses. Even though GPU achieves

latency hiding through massive parallelism, it still spends many

stall cycles to wait for data.

To address the inefficiency of irregular memory accesses on GPU,

prefetching is one of the promising technologies. Most of current

prefetchers, such as stream prefetchers, stride prefetchers and GHO

prefetchers, can effectively reduce memory latency for regular

access patterns. [1] proposed an inter-thread prefetching

mechanism with hardware prefetchers training to reduce the

negative effect of prefetching on GPU. APRES [2] combines warp

scheduling and prefetching to improve cache efficiency. Both of

the two recent proposed GPU prefetching mechanism are based on

stride or stream prefetchers, which are not able to deal with

indirect memory accesses of BFS.

CSR-format graph data structure is a kind of compressed graph

data structures widely used to store large graphs. It uses two data

arrays (vertex list and edge list) to describe the relationships of the

vertex and edges in a graph. In this paper, we propose a Data

Structure-Aware Prefetching (DSAP) that generates prefetching

requests based on the data-dependent relationship between graph

data structures and the memory access pattern of BFS. For six

datasets from three different applications, DSAP achieves a

geometric mean speedup of 1.28x, and up to 1.48x, compared to

the GPU without prefetchers.

National University of Defense Technology, Changsha, Hunan, China
Space Engneering University, Beijing, China

Hui Guo, Libo Huang, Yashuai Lü, Sheng Ma and Zhiying Wang

DSAP: Data Structure-Aware Prefetching for Breadth First Search on GPU

B. Adaptive Prefetching Depth

According to the traditional BFS algorithm, most of memory

accesses are data-dependent. For example, accesses to vertex list is

dependent on the vertex id fetched from the work list. However,

the data dependent relationship and the memory access pattern are

fixed and sequential, therefore prefetchers can easily copy its

memory access pattern and generate prefetching requests

according its data dependent relationships, with some explicit

graph data structure information. Therefore, prefetchers need to

monitor the memory accesses to decide which data to prefetch

next. Tab. 1 shows how DSAP prefetches all the data of one

iteration by monitoring memory accesses to graph data structures.

C. Hardware Design

For each cuda core, a DSAP prefetching unit is designed to sit

aside L1 cache. Each prefetching unit has four main components

(Fig. 1). A set of registers store the address boundaries of the graph

data structures. A table records the runtime information of each

warp. These runtime information includes the indices of graph data

structures being accessed by the warp. DSAP uses this runtime

information to calculate the addresses of data to be prefetched. A

prefetching request queue stores the memory access requests

generated by the prefetching unit. A control unit takes

responsibilities for managing the adaptive prefetching depth and

controlling prefetching.

Monitored Memory Accesses Prefetching Actions

Load vid = work_list[i] Prefetching work_list[i+1]

Prefetched

nvid = work_list[i+1]

Prefetching vertex_list [nvid] 

and vertex_list [nvid+1]

Prefetched

eid = vertex_list[nvid] and 

neid = vertex_list[nvid+1]

Prefetching edge_list[eid:neid]

Prefetched edge_list[eid:neid] Prefetching 

visited_list[edge_list[eid:neid]]

Table 1 Prefetching Actions Based on Monitored Memory 

Accesses

Figure 1 Hardware Components of DSAP Prefetching Unit

Name of Dataset Nodes Edges 

roadNet-CA 1,965,206 27,766,607

USA-Road 1,070,376 2,712,798

roadNet-TX 1,379,917 1,921,660

Oregon-2 11,461 32,731

Cit-HepPh 34,546 421,578

roadNet-PA 188,092 1,541,898

1

1.1

1.2

1.3

1.4

1.5

1.6

roadNet-CA USA-Road roadNet-TX Oregon-2 Cit-HepPh roadNet-PA GeoMean

Sp
ee

du
p

s 
ov

er
 G

P
U

 w
/o

 p
re

fe
tc

h
er

Datasets

UT=0 UT=0.5 UT=0.75 UT=0.85 UT=0.9

B. Adaptive Prefetching Depth

Fig. 2 shows the speedups of BFS running on the GPU with the

prefetchers using different utilization thresholds. “UT” means

Utilization Threshold, which is used by the adaptive prefetching

depth management. When UT equals to 0, the adaptive prefetching

depth management is inactive. In general, we test six datasets from

three different applications, which are road networks, autonomous

systems graphs and citation networks and DSAP achieves a

geometric mean speedup of 1.28x, compared to the performance of

the GPU without prefetchers. For the USA-Road dataset, DSAP

achieves the highest speedup of 1.48x, while for the Oregon-2

dataset, it only has a speedup of 1.16x. The size of the graph is a

key factor. The size of Oregon-2 is small enough to be cached in

L2 cache, therefore DSAP only benefits the cycles of transferring

data from L2 to L1. When UT equals to 0.75, DSAP achieves the

best performance, this demonstrates the adaptive prefetching depth

management can make a good balance between prefetching data

and on-chip memory storage.

Table 3 The Features of Tested Datasets

Table 2 The Parameters of GPGPUSim Simulator

Parameter Value

Number of SMs 15

Threads per SM 1536

Threads per Warp 32

Warp Scheduling Policy GTO

L1 Cache Size 48KB

https://snap.stanford.edu/data/index.html

