Exploiting Inter-Phase Application Dynamism to Auto-tune HPC
Applications for Energy-efficiency

Madhura Kumaraswamy and Michael Gerndt
Technical University of Munich
Garching, Bavaria
{kumarasw|gerndt}@in.tum.de

ABSTRACT

The EU Horizon 2020 project READEX provides a novel

readex_interphase tuning plugin to exploit the variation in the ap-
plication behavior between individual time loop iterations, or inter-
loop dynamism to auto-tune HPC applications for energy consump-
tion. It clusters phases with similar behavior using DBSCAN for
normalized PAPI metrics and computes the best tuning parameter
settings. The methodology is evaluated for miniMD and INDEED.

CCS CONCEPTS

« Hardware — Power estimation and optimization; « Com-
puter systems organization — Multicore architectures; - Soft-
ware and its engineering — Application specific develop-
ment environments;

KEYWORDS
Automatic tuning, HPC, DVES, energy-efficiency, DBSCAN

ACM Reference Format:

Madhura Kumaraswamy and Michael Gerndt. 2018. Exploiting Inter-Phase
Application Dynamism to Auto-tune HPC Applications for Energy-efficiency.
In Proceedings of 47th Internatonal Conference on Parallel Processing (ICPP’18).
ACM, New York, NY, USA, Article 4, 2 pages. https://doi.org/10.475/123_4

1 INTRODUCTION

Optimizing energy consumption has become a challenging issue
for current HPC systems and in designing new Exascale systems.
To overcome this challenge, the EU Horizon 2020 project READEX
(Runtime Exploitation of Application Dynamism for Energy-efficient
Exascale computing) provides an auto-tuning framework to tune
HPC applications for energy-efficiency by switching tuning param-
eters dynamically at runtime.

The READEX methodology consists of Design Time Analysis
(DTA) and Runtime Application Tuning (RAT). During DTA, the
Periscope Tuning Framework (PTF) [6] calls a tuning plugin, which
performs tuning steps to explore the multi-dimensional space of
system configurations, each of which is a tuning parameter. Mea-
surements are requested for instances (rts’s) of coarse-granular
instrumented program regions, called significant regions. The best
system configurations for the rts’s are stored in a tuning model,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICPP’18, July 2018, Eugene, Oregon USA

© 2018 Copyright held by the owner/author(s).

ACM ISBN 123-4567-24-567/08/06.

https://doi.org/10.475/123_4

which is read during the RAT stage to dynamically switch the sys-
tem configuration on encountering an rts during production runs.

READEX determines the potential for tuning energy consump-
tion by leveraging the variation (dynamism) in the execution char-
acteristics of an application. It computes: a) intra-phase dynamism,
which is caused due to the variation in the execution of rts’s within
a single instance (phase) of the main progress loop w.r.t. execution
time and compute intensity, and b) inter-phase dynamism resulting
from the variation in the execution characteristics between phases
w.r.t. execution time.

{
H
&

Execution time (s)
o = N w =y wv [e)] ~ [oe]
|

0 10 20 30 40 50 60 70 80 90 100 110
Phase number

Figure 1: Variation of the execution time with respect to the
phase number of the time loop in INDEED.

A novel tuning plugin, called readex_interphase exploits the inter-
phase dynamism, for example, resulting from variations in the
execution time of the time loop of a metal-forming simulation ap-
plication that performs an adaptive mesh refinement, as illustrated
in Figure 1. The readex_interphase plugin can group similar applica-
tion phases, and select different best system configurations for each
phase group. This also allows individual rts’s called from different
phase groups to be distinguished in the tuning model.

2 INTER-PHASE TUNING PLUGIN

The readex_interphase plugin performs the following three tuning
steps to cluster similarly behaving phases:

(1) Cluster Analysis: The plugin reads the tuning parameters
(CPU frequency, uncore frequency and OpenMP threads),
the objective (energy, execution time, CPU energy, Energy
Delay Product, Energy Delay Product Squared, or Total Cost
of Ownership) for tuning, and the significant regions from
a configuration file. It uses the random search strategy [6]
to create a search space of the tuning parameters, and per-
forms experiments to measure the effects of a randomly
selected system configuration. In each experiment, the plu-
gin requests the objective values for the phase and the rts’s,

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4

ICPP’18, July 2018, Eugene, Oregon USA

Madhura Kumaraswamy et al.

Table 1: Energy savings obtained for the phase and the rts’s for miniMD and INDEED for the readex_interphase plugin.

Application Static savings for the whole phase (%) Static savings for the rts’s (%) Dynamic savings for the rts’s (%)

miniMD 13.74
INDEED 5.75

14.51 0.03
9.24 10.45

as well as PAPI [2] hardware metrics (AVX instructions, L3

cache misses, and the conditional branch instructions).

It uses DBSCAN (Density-Based Spatial Clustering of
Applications with Noise) [4] to cluster phases using com-
pute intensity (W%) and conditional branch

instructions as the features (clustering aspects). DBSCAN
takes minPts, which is the minimum number of points in the
neighborhood of a point, and eps, which is the maximum dis-
tance between two points in the same neighborhood as the
parameters for clustering. eps is automatically determined
as the point corresponding to a sharp change in the average
3-NN distance curve using the elbow method [5]. The plugin
normalizes the cluster features, and groups closely packed
points into clusters, and marks the other points as noise.

For each cluster, the plugin determines the best system
configuration that results in the lowest objective value nor-
malized by the AVX instructions. This allows to tune phases
with different amounts of work but of the same kind. The
cluster-best configuration is then applied for all the phases
and rts’s of a particular cluster during the application run.

(2) Default Execution: Here, the plugin creates the same num-
ber of experiments as in the previous step. Each experiment
measures the objective value for the default system configu-
ration (execution with the default tuning parameter settings
provided by the batch system). These measurements are used
to compute the savings at the end of the plugin.

(3) Verification: The plugin determines if the computed savings
match the true savings by executing each phase with the
best configuration of its cluster, and the rts’s with the rts-
specific best configuration of the current phase’s cluster. If
the phase is a noise point, it is executed using the default
configuration.

The plugin then computes: (a) static savings for the whole
phase, which is the improvement in the objective value for
the best static configuration of the phase over the default
configuration accumulated over all the clusters, (b) static
savings for the rts’s, which is the improvement in the objec-
tive value for the rts’s for the cluster-best setting over the
default setting accumulated over all the clusters, and (c) dy-
namic savings for the rts’s, which is the improvement in the
objective value for rts-specific best configuration over the
static cluster-best setting accumulated over all the clusters.

3 EVALUATION

The readex_interphase plugin was evaluated for miniMD [3], which
performs molecular dynamics simulation of a Lennard-Jones Em-
bedded Atom Model (EAM) system, and INDEED [1], a sheet metal
forming simulation software that performs an adaptive mesh re-
finement. Experiments were conducted on the Taurus HPC system

at the ZIH in Dresden. Each node on Taurus runs with a default
CPU and uncore frequencies of 2.5 GHz and 3 GHz respectively,
and uses the HDEEM [7] measurement infrastructure for processor
as well as blade energy measurements.

First, fine-granular regions were filtered, and significant regions
were identified. DTA was then performed by applying the
readex_interphase plugin. Table 1 presents the static and dynamic
savings obtained for miniMD and INDEED. Static savings of 13.74%
for miniMD and 5.75% for INDEED were observed. While good
static (9.24%) and dynamic savings (10.45%) were reported for the
rts’s of INDEED, miniMD records lower dynamic savings because it
has only two significant regions, while INDEED has nine significant
regions, thus providing more potential for dynamism.

4 CONCLUSIONS

To overcome the challenge of optimizing energy efficiency, a novel
readex_interphase tuning plugin was developed to exploit inter-
phase dynamism, and select best system configurations for groups
of phases. A three-step tuning strategy handles dynamism across
phases by performing experiments for randomly chosen system
configurations. The plugin clusters phases using DBSCAN and
uses normalized PAPI metrics (compute intensity and conditional
branch instructions) as clustering features . It performs a verifica-
tion step to compute the true savings by taking into account the
dynamic switching overhead. Static savings of 13.74% obtained for
miniMD, and dynamic savings of 10.45% for INDEED highlight the
effectiveness of this plugin.

Acknowledgments. The research leading to these results has
received funding from the European Union’s Horizon 2020 Pro-
gramme under grant agreement number 671657.

REFERENCES

[1] [n. d.]. Highly Accurate Finite Element Simulation for Sheet Metal Forming.
http://gns-mbh.com/en/produkte/indeed/.

[2] [n. dJ] Performance Application Programming Interface.
http://icl.cs.utk.edu/papi/.

[3] Paul Stewart Crozier, Heidi K Thornquist, Robert W Numrich, Alan B Williams,
Harold Carter Edwards, Eric Richard Keiter, Mahesh Rajan, James M Willenbring,
Douglas W Doerfler, and Michael Allen Heroux. 2009. Improving performance via
mini-applications. Technical Report. Sandia National Laboratories.

[4] Martin Ester, Hans-Peter Kriegel, Jérg Sander, and Xiaowei Xu. 1996. A Density-
based Algorithm for Discovering Clusters a Density-based Algorithm for Discov-
ering Clusters in Large Spatial Databases with Noise. In Proceedings of the Second
International Conference on Knowledge Discovery and Data Mining (KDD’96). AAAI
Press, 226-231. http://dl.acm.org/citation.cfm?id=3001460.3001507

[5] Manisha Naik Gaonkar and Kedar Sawant. 2013. AutoEpsDBSCAN: DBSCAN
with Eps automatic for large dataset. International Journal on Advanced Computer
Theory and Engineering 2, 2 (2013), 11-16.

[6] Michael Gerndt, Eduardo César, and Siegfried Benkner (Eds.). 2015. Automatic
Tuning of HPC Applications - The Periscope Tuning Framework. Shaker Verlag,
Aachen.

[7] D.Hackenberg, T. Ilsche, J. Schuchart, R. Schone, W.E. Nagel, M. Simon, and Y.
Georgiou. 2014. HDEEM: High Definition Energy Efficiency Monitoring. In Energy
Efficient Supercomputing Workshop (E2SC). https://doi.org/10.1109/E2SC.2014.13
DOI: 10.1109/E2SC.2014.13.

http://gns-mbh.com/en/produkte/indeed/
http://dl.acm.org/citation.cfm?id=3001460.3001507
https://doi.org/10.1109/E2SC.2014.13
http://dx.doi.org/10.1109/E2SC.2014.13

	Abstract
	1 Introduction
	2 Inter-phase Tuning Plugin
	3 Evaluation
	4 Conclusions
	References

