Toward Footprint-Aware Power Shifting for Hybrid Memory Based Systems

Eishi Arima The University of Tokyo

Toshihiro Hanawa The University of Tokyo

Martin Schulz Technical University of Munich

Introduction

- *Power consumption* is one of the major concerns in HPC
 - Desired features: *power capping* and *power shifting* [1]
- Memory bandwidth/capacity limitations are also severe
 - Promising solution: hybrid main memory architecture
 - DRAM + NVRAM (Intel Optane SSD[2])
 - MCDRAM + DDR4 (in Intel Knights Landing[3])

Goal of this research

A sophisticated power management scheme for hybrid memory based systems

Motivation

Key observation: the effective bandwidth decreases as the footprint size scales (Fig. 1) on a hybrid memory system

As a result, the performance bottleneck changes depending on the footprint size (Fig. 3)

Fig. 2. Tested Code Fig. 1. Footprint size vs bandwidth

Fig. 3. Measured rooflines [4] for various footprint size

Concept

Objective: Maximizing performance (*Perf*) under a total power constraint (P_{total}) by controlling CPU/memory power (P_{cpu}/P_{mem}) for a given footprint (or problem) size (S)

- Formulation:
 - $\max Perf(P_{cpw}, P_{mem}, S)$ s.t. $P_{cpu} + P_{mem} \leq P_{total}$
- * NVRAM power control is not considered future work

Fig. 4. Our environment

Solution

Footprint Aware Power Shifting: Shifting power between **Pcpu** and **Pmem** in accordance with the **footprint size** (S)

We should allocate more power on the bottleneck component, which highly depends on the footprint size (Fig. 3)

Evaluation Setting

Experiment

We test various combinations of $\{P_{cpu}, P_{mem}\}$ and choose the best one for each footprint size (S) under a given $P_{total} (=P_{cpu} + P_{mem})$

Environment

- System Configuration: Summarized in Table 1
- Power Management: Running Average Power Limit (RAPL)[5]
- Workloads: FFT, Lulesh, and the synthetic streaming code shown in Fig.2 (Streaming)

Table 1. System Configuration

CPU Package	Xeon Gold 6154 Processor (Skylake), 18 cores, 3.0GHz, TDP 200W x2 sockets
Memory System	DRAM: DDR4-2666 x12 modules, 12ch, 192GiB NVRAM: Intel Optane SSD P4800X, 375GB, 2.4GB/s(read), 2.0GB/s(write) x2 cards Data management: IMDT [2]
OS	Cent OS 7.4
Compiler	Intel C++/Fortran Compiler 17.0.4 Options: -O3, -qopenmp

Power Shifting Result

Synthetic streaming code

- CPU intensive case (Fig. 5): Shifting power from P_{cpu} to P_{mem} improves performance because the CPU becomes less critical
- Memory intensive case (Fig. 6): Shifting power from P_{mem} to P_{cpu} improves performance – the DRAM needs less power due to frequent NVRAM accesses

—512GiB

Best at

Fig. 5. Streaming (F/B: 10.7) **Fig. 6.** Streaming (F/B: 0.17) $P_{total} (= P_{cpu} + P_{mem}): 220 [W]$

Benchmarks

We observed performance improvement also for benchmarks

Fig. 7. FFT $P_{total} (= P_{cpu} + P_{mem}): 260 [W]$

* Performance is normalized to that without power capping for each data size

Conclusions and Future Work

Conclusions

Footprint-aware power shifting is promising to improve the performance of power constrained hybrid memory based systems

Future Work

- Developing a software framework, a performance model, and a power allocation algorithm to realize our proposal
- Including NVRAM power management
- Evaluating with other hybrid memory based systems such as Intel Knights Landing

Contact

[name] Eishi Arima [organization] The University of Tokyo [email] arima@cc.u-tokyo.ac.jp [web] http://www.cspp.cc.u-tokyo.ac.jp/arima/index-e.html

Acknowledgement

This work is partly supported by JSPS Grant-in-Aid for Research Activity Start-up (JP16H06677), JSPS Grant-in-Aid for Early-Career Scientists (JP18K18021), and Research on Processor Architecture, Power Management, System Software and Numerical Libraries for the Post K Computer System of RIKEN.

References

[1] Lefurgy, C., et al. "Power Capping: A Prelude to Power Shifting". Cluster Computing 11, 2 (2008), 183–195. [2] Intel. "Intel® Memory Drive Technology, Set Up and Configuration Guide", 2017.

[3] Jeffers, J., et al. "Intel Xeon Phi Processor High Performance Programming: Knights Landing Edition". Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2016.

[4] Williams, S., et al. "Roofline: An Insightful Visual Performance Model for Multicore Architectures". Communications of the ACM 52, 4 (2009), 65–76. [5] Intel. "Intel® 64 and ia-32 Architectures Software Developer's Manual", System Programming Guide, 2017.