

### Introduction

- Distributed computing technologies have been leveraged in machine learning applications
- High-end resources are used, e.g. cluters, GPUs etc.
- We develop a framework for serving and training deep neural networks over the internet.

### Background

### Tensorflow

- The most widely used framework for deep learning
- Recently, TensorFlow.js is added to the framework which brings machine learning to the browswer
- However, it requires additional services on the backend to distribute trained models to the clents

### **Objectives**

- Develop a framework to facilitate distributing and training models in the web browser
- Effectively merge weights generated by a number of clients
- Efficiently utilize peer-owned resources distributed over the Internet



## WebNN: A Distributed Framework for Deep Learning

Aaron Goin, Ronald Cotton and Xinghui Zhao School of Engineering and Computer Science Washington State University, Vancouver WA 98686, U.S.A.

## **WebNN Architecture**

#### System Design and Implementation

- WebNN server builds off of NodeJS to serve over http
- Command-line controls are supported by wnn.js
- WebNN can be deployed as a standalone server or applied to an existing application as a service

#### Hardware

- Both server and clients are iMacs
- 2.5GHz i5 CPU, 8GB RAM
- AMD Radeon 6750M GPU

# **Experimental Results**

- Methodology for merging weights from multiple clients
  - Average merge: weights are simply averaged together

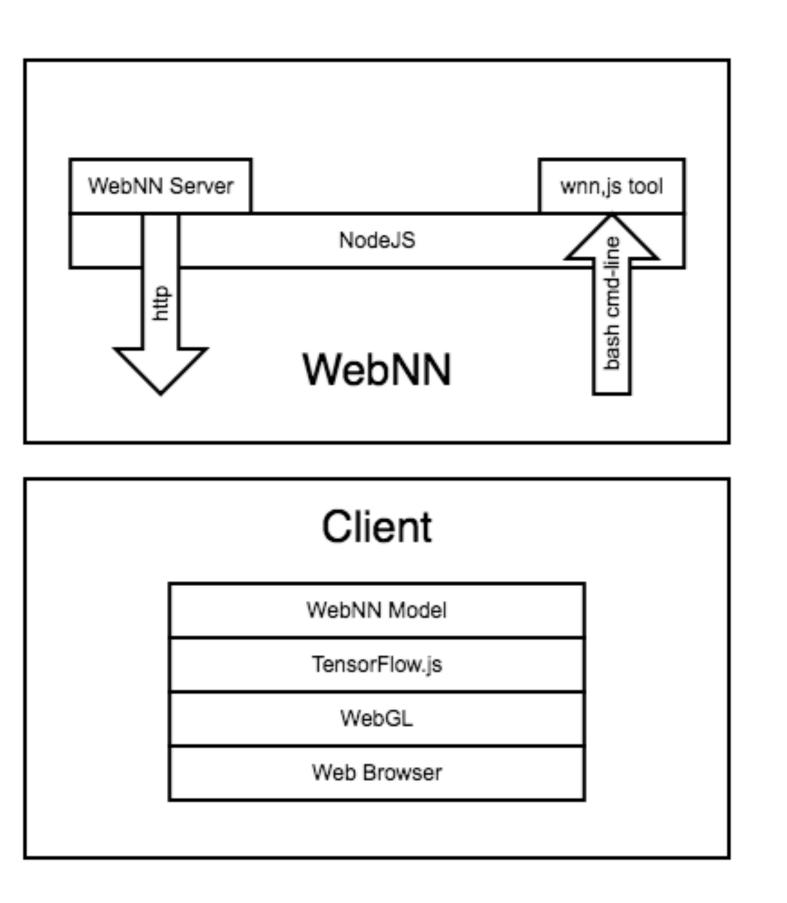
$$W_n = (W_{n-1} + W_p)/2.$$

• Weighed merge: takes potential staleness into account while averaging the weights

 $W_n = (W_{n-1} * t_{n-1} + W_p * t_p) / (t_{n-1} + t_p)$ 

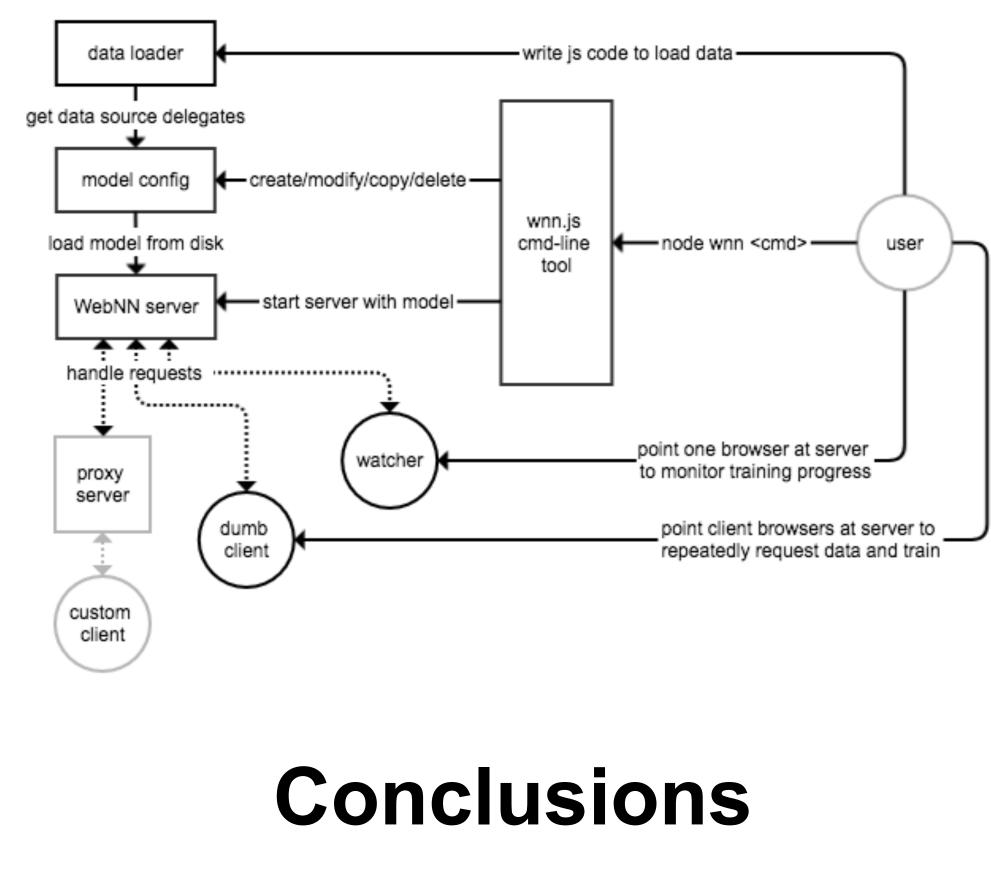
 Mimic merge: uses the same information as weighted average, but handles differently:

> $d = t_{n-1} - t_p$  $W_D = W_p - W_{n-1}$


else:

if d > 0:

50.0%


 $W_n = (W_{n-1} + W_D)/(|d| + 1).$ 

 $W_D = W_{n-1} - W_p$ 



|     | Merge Comparison (4 Clients) |    |    |    |       |    |                  |   |         |       |       |        |         |          |       |           |   |
|-----|------------------------------|----|----|----|-------|----|------------------|---|---------|-------|-------|--------|---------|----------|-------|-----------|---|
|     |                              |    |    |    |       |    |                  |   |         |       |       |        |         |          |       |           |   |
|     |                              |    |    |    |       |    |                  |   |         |       |       |        |         |          |       |           |   |
|     |                              |    |    |    |       |    |                  |   |         |       |       |        |         |          |       |           |   |
|     |                              |    |    |    |       |    |                  |   |         |       |       |        |         |          |       |           |   |
|     |                              |    |    |    |       |    |                  |   |         |       |       |        |         |          |       |           |   |
|     |                              |    |    |    |       |    |                  |   |         |       |       |        |         |          |       |           |   |
|     |                              |    |    |    |       |    |                  |   |         |       |       |        |         |          |       |           |   |
| 1.1 | • •                          |    | -  |    |       |    | - 100            | ~ | <u></u> |       |       |        | -       |          |       |           |   |
| 50  | 57                           | 64 | 71 | 78 | 85    |    | 106 11<br>(secor |   | 127 13  | 4 141 | 148 1 | 55 162 | 2 169 1 | 76 183   | 190 1 | 97 204 21 | 1 |
| -   |                              |    |    | a4 |       |    | -                | - | 1       | -     |       |        | . A     | <u> </u> |       |           |   |
| -   | -                            | -  | -  | -  | ~     | V  |                  | - | -       |       | W.C   | V.V.   | -       |          |       |           |   |
|     |                              |    |    |    |       |    |                  |   |         |       |       |        |         |          |       |           |   |
|     |                              |    |    |    |       |    |                  |   |         |       |       |        |         |          |       |           |   |
|     |                              |    |    |    |       |    |                  |   |         |       |       |        |         |          |       |           |   |
|     |                              |    |    |    |       |    |                  |   |         |       |       |        |         |          |       |           |   |
|     |                              |    |    |    |       |    |                  |   |         |       |       |        |         |          |       |           |   |
|     |                              |    |    |    |       |    |                  |   |         |       |       |        |         |          |       |           |   |
|     |                              |    |    |    |       |    |                  |   |         |       |       |        |         |          |       |           |   |
|     |                              |    |    |    |       |    |                  |   |         |       |       |        |         |          |       |           |   |
|     |                              |    | _  | We | ighte | ed |                  | _ | Mimi    | c     |       | -      | — Ave   | erage    |       |           |   |
|     |                              |    |    |    |       |    |                  |   |         |       |       |        |         |          |       |           |   |

- to merge into their own.



Special thanks to the support from WSUV Mini Research Grant.



### Workflow

• Users create their models in a JSON format Configure its training and validation properties Create a JavaScript module used by the server to get training and validation data Server hands the model off to clients for training, along with a set of weights and training data upon request

 Clients send back their modified weights to the server, and receive a new set of weights

• WebNN is a framework for distributing and training a centralized neural network in the browser.

 WebNN can be easily deployed over a network of loosely coupled computational resources

 A peer-based weight merge system works best with a weighted average favoring weights with more training iterations behind them

• The peer-based merging can be improved to promote less variance between clients.

### Acknowledgement

#### https://labs.wsu.edu/dsr/