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• Distributed computing technologies have been 
leveraged in machine learning applications

• High-end resources are used, e.g. cluters, 
GPUs etc. 

• We develop a framework for serving and 
training deep neural networks over the internet.

Tensorflow
• The most widely used framework for deep 
learning

• Recently, TensorFlow.js is added to the 
framework which brings machine learning to 
the browswer

• However, it requires additional services on 
the backend to distribute trained models to 
the clents

Experimental Results

• WebNN is a framework for distributing and training a 
centralized neural network in the browser.

• WebNN can be easily deployed over a network of 
loosely coupled computational resources

• A peer-based weight merge system works best with 
a weighted average favoring weights with more 
training iterations behind them

• The peer-based merging can be improved to 
promote less variance between clients. 

https://labs.wsu.edu/dsr/

• Develop a framework to facilitate distributing 
and training models in the web browser

• Effectively merge weights generated by a 
number of clients

• Efficiently utilize peer-owned resources 
distributed over the Internet

System Design and Implementation
• WebNN server builds off of NodeJS
to serve over http

• Command-line controls are 
supported by wnn.js

• WebNN can be deployed as a 
standalone server or applied to an 
existing application as a service 

• Both server and clients are iMacs
• 2.5GHz i5 CPU, 8GB RAM
• AMD Radeon 6750M GPU

Hardware
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• Users create their models in a JSON format
• Configure its training and validation properties
• Create a JavaScript module used by the 
server to get training and validation data

• Server hands the model off to clients for 
training, along with a set of weights and 
training data upon request

• Clients send back their modified weights to 
the server, and receive a new set of weights 
to merge into their own.

• Methodology for merging weights from multiple clients
• Average merge: weights are simply averaged together 

• Weighed merge: takes potential staleness into account while 
averaging the weights

• Mimic merge: uses the same
information as weighted
average, but handles 
differently: 


