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Phase	I:	Successes

Stress	and	strain	fields	in	grain	interiors	are	smooth.	
Hence	we	can		treat	these	as	separate	domains.

99%	energy	of	the	space-domain	Green’s	function	is	
concentrated	at	central	peak.	Hence,	Green’s	function	
can	be	truncated	before	convolution.	

Right:
N	=	512
Slice	of	3D	
component	of	
space-domain
Green’s	function

Figure 3 uses the finite element mesh as a means to view the ff-HEDM dataset. In
this case, each element in the mesh is assigned a unique ff-HEDM grain, and multiple
elements are assembled to represent the grains. The grains are then a voxellated repre-
sentation of the actual grain, where in this case no distortion has been introduced to
smooth the grain boundaries. The color of each grain represents the Grain ID field in
the ff-HEDM data. Since only the ff-HEDM data are used in this representation, the
exact morphology of the grains is not available as the element-to-grain assignment is
similar to a 3D Voronoi representation of the grain structure, differing due to the vox-
ellated nature of the elements. As the mesh density trends to infinity, the representa-
tion would converge toward an exact Voronoi representation.
Figure 4 uses the same finite element mesh to show the 69 grains used to align the

nf-HEDM data with the ff-HEDM data. In this case, the morphology of the grains is

Fig. 3 The ff-HEDM data viewed on the accompanying finite element mesh. Color represents a grain
identification number

Fig. 4 The nf-HEDM data viewed on the accompanying finite element mesh. Color represents a grain
identification number
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MSC	Basic	Scheme	is	solved	by	convolution	with	Green’s	
function	using	FFT.		

Increasing	grid	resolution	is	desirable.	However,	larger	
problem	sizes	must	be	run	with	parallelized	code.	This	requires	
large	parallel	FFT	computations	which	means	high	memory	
usage	and	all-all	communication.

Memory	requirement			increases	32.4k times!

Goal:	 Overcome	these	limitations	and	run	stress-strain	
simulations	for	larger	problem	sizes	

Our	solution:	An	algorithm	and	software	co-design	 for	
heterogeneous	platforms	using	irregular	domain	
decomposition	and	local	FFTs.	 Each	grain	(domain)	is	assigned	to	a	GPU.	For	small	grains,	

single	GPU	can	process	multiple	grains.	Distribution	will	be	
done	using	appropriate	load	balance.	Local	FFTs	are	
performed	on	the	GPU	side.
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Figure 1: Proposed method
tensor operation is the contraction of indices (denoted by ‘:’), which
forms lower rank tensors from higher rank tensors. This is done
by a sum over repeated indices after multiplication. Thus, Ci jkl :
Di j =

P
i

P
j
Ci jklDi j = Ekl and yields a rank-2 tensor.

2.2 MSC-Basic Scheme
The pseudocode for this method is as given below. � (x) and � (x)
refer to the strain and stress tensor �elds at point x respectively.
Ci jkl (x) is the rank-4 sti�ness tensor. E is initial average strain.
�̂mnkl (��� ) is the Green’s operator in Fourier space at frequency
point ��� . The convergence error is es and tolerance error is etol .
��kl is the computed perturbation in component (k, l ) of the strain
tensor. Superscripts indicate iteration number. The iterative scheme
continues till convergence is reached. For more details, refer to [2].

Algorithm 1MSC Basic Scheme
1: Initialize:

�0  E,
� 0
mn (x)  Cmnkl (x) : �0kl (x)

2: while es > etol do
3: �̂ imn (��� )  FFT(� imn (x))
4: Check convergence
5: ��̂i+1kl (��� )  �̂klmn (��� ) : �̂ imn (��� )

6: Update strain: �̂i+1kl (��� )  �̂ikl (��� ) � ��̂i+1kl (��� )

7: �i+1kl (x)  IFFT(�̂i+1kl (��� ))

8: Update stress: � i+1mn (x)  Cmnkl (x) : �i+1kl (x)

2.3 MSC-Alternate Scheme
In MSC-Alternate Scheme, each grain is processed independently
using a smaller FFT and the results are combined into the orig-
inal volume at the end of each iteration. A stress update step is
performed by contraction of the sti�ness tensor with the updated
strain �eld. In the next iteration, the updated stress �eld is again
decomposed into grains and distributed. GivenG grains in the com-
posite, let (� i (x))j be the stress in grain j 2 G. The pseudocode for
MSC-Alternate Scheme is given by Algorithm 2.

A MATLAB demo implementation computes error between the
outputs of the MSC-Basic Scheme and MSC-Alternate Scheme for

Algorithm 2 MSC Alternate Scheme
1: Initialize:

�0  E,
� 0
mn (x)  Cmnkl (x) : �0kl (x)

2: while es > etol do
3: for each grain j 2 G do
4: (�̂ imn (��� ))j  FFT((� imn (x))j )
5: Check convergence
6: Update strain: �(�̂i+1kl (��� ))j  �̂klmn (��� ) : (�̂ imn (��� ))j

7: �(�i+1kl (x))j  IFFT(�(�̂i+1kl (x))j )

8: Gather step: ��i+1kl  
P
j
�(�i+1kl )j

9: Update strain: �i+1kl (x)  �ikl (x) � ��i+1kl (x)
10: Update stress: � i+1mn (x)  Cmnkl (x) : �i+1kl (x)

various microstructures in a copper dataset. Table 2 shows error for
3 grid sizes, 323, 643 and 1283 for di�erent numbers of iterations.
We conclude that output MSC-Alternate Scheme is in excellent
agreement with that of MSC-Basic Scheme.

Iter.
#

% error in stress % error in strain
323 643 1283 323 643 1283

1 0.013 % 0.004 % 0.002% 0.012 % 0.003 % 0.003 %
5 0.972 % 0.066 % 0.180 % 1.020 % 0.096 % 0.130 %

Table 2: Error in full �eld in MSC-Alternate Scheme for dif-
ferent grids, copper microstructure

2.4 Reduced Communication
An important observation is that the stress and strain �elds in the
grain interior are smooth but undergo more variation at the grain
boundaries. Hence, a model can be �t to the �elds in the grain
interior while leaving the �elds at the boundary uncompressed as
approximations at the boundary lead to large errors. Due to lack of
space however, modeling results are not described here.

3 CONCLUSIONS
This work demonstrates an alternate scheme designed to reduce
memory requirements of MSC-Basic Scheme. Instead of one large
3-D FFT, we perform smaller FFTs in parallel on each of the grains
of the composite. Our preliminary results show that the accuracy
of stress and strain is not signi�cantly a�ected by using MSC-
Alternate Scheme instead of MSC-Basic Scheme. Approximation
to �elds in grain interior have been considered here, and the next
phase will carefully look at the grain boundary interactions, which
must happen at full resolution. Future work also includes a GPU
implementation that achieves savings in communication by trans-
mitting models for �elds in grains in place of full tensor �elds.
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Modeling Dataset II
• Irregular grains

– Consider example of a single grain 

Smooth regions:
not regular, so pack

rectangles

Rectangle shape 
params: (xr,yr), w, h

1. Polynomial model,
2. Spline model

41

Identify smooth 
region

Compactly 
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shape
Find model for 

region

Compression

Runs	FORTRAN	code
Writes	data	in	each	iteration

Processes	data
in	MATLAB

Writes	output

Next	iteration

Data	with
approximations

Computational	aspects	for	prototype	development:	MATLAB-
FORTRAN	workflow

Extreme	memory	requirements	and	high	communication	overhead	
prevent	scaling	of	large	scale	iterative	simulations	involving	parallel	
FFTs	to	higher	grid	sizes,	which	is	necessary	for	high	resolution	
analysis.

An	example	is	that	of	Moulinec Suquet’s Basic	Scheme	to	compute	
local	stress	and	strain	fields	in	materials	,	a	partial	differential	
equation	simulation	that	uses	FFTs

Figure 3 uses the finite element mesh as a means to view the ff-HEDM dataset. In
this case, each element in the mesh is assigned a unique ff-HEDM grain, and multiple
elements are assembled to represent the grains. The grains are then a voxellated repre-
sentation of the actual grain, where in this case no distortion has been introduced to
smooth the grain boundaries. The color of each grain represents the Grain ID field in
the ff-HEDM data. Since only the ff-HEDM data are used in this representation, the
exact morphology of the grains is not available as the element-to-grain assignment is
similar to a 3D Voronoi representation of the grain structure, differing due to the vox-
ellated nature of the elements. As the mesh density trends to infinity, the representa-
tion would converge toward an exact Voronoi representation.
Figure 4 uses the same finite element mesh to show the 69 grains used to align the

nf-HEDM data with the ff-HEDM data. In this case, the morphology of the grains is

Fig. 3 The ff-HEDM data viewed on the accompanying finite element mesh. Color represents a grain
identification number

Fig. 4 The nf-HEDM data viewed on the accompanying finite element mesh. Color represents a grain
identification number
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3x3x3x3	stiffness	tensor

stress strain

3D	Hooke’s	law:

C0
ijkluk,lj(x) + ⌧ij,j(x) = 0 (1)

Elliptical	PDE:

Proposed	Method
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Smooth	stress	fields	in	grain	interiors		
can	be	compactly	represented	with	
data	models.	This	reduces	
communication	overhead.
Grain	boundaries	are	convolved	at	full	
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Motivation

Smooth	regions	for	data	modeling:

Convergence	of	our	method:

Mismatch	in	stress	field	in	each	iteration	compared	to	MSC	
Basic	Scheme:

Stress	field	slice	in	
MSC	Basic	Scheme:

Stress	field	slice	in	
MSC	Alternate	Scheme:

Thrust	2:	Deployment	on	heterogeneous	system	with	Tesla	
K80

Thrust	3:	Support	and	adapt	to	different	accelerators	and	
machines

GPUGPU Xeon	PHI Xeon	PHI

Thrust	4:	Extend	to	visco-plastic	code	[2]	which	includes	
deformation	of	crystals	and	studies	cracking	and	fracture	
formation

as the ones previously considered, but, in this case, in order to assess the rate-sensitivity of the model, four different values of
the axial strain rate component were prescribed: _E33 ¼ 10"3;10"2;10"1 and 1 s"1. The predicted final slope of the stress–
strain curves and the relatively high strain-rate dependence of the effective response, corresponding to the relatively low
stress exponent adopted, are well captured by the model.

Next, we present a convergence analysis of the proposed numerical method. Fig. 3 shows the convergence of two simu-
lations for the copper polycrystal, deformed in uniaxial tension at a axial strain rate _E33 ¼ 1s"1, assuming no hardening
(H = 0) and a very strong linear hardening (H = 1000 MPa, i.e. H ¼ 100# ss

o). Fig. 3(a) shows the effective stress–strain curves
obtained after 15 steps of 0.01%. In order to compare the convergence rate in both cases, Fig. 3(b) and (c) show the average
number (calculated over the entire Fourier grid) of N-R iterations required to solve Eq. (16), as a function of the accumulated
number of (‘‘global’’) iterations of the EVP–FFT model, for the ‘‘no-hardening’’ and ‘‘hardening’’ cases, respectively. (Note that
in Section 2.3 the N-R and global iterations are indicated by the supra-indices (j) and (i), respectively). The alternating white
and gray regions represent the intervals of global iterations required to converge within each deformation increment.
Fig. 3(d) and (e) show the average (calculated over the entire Fourier grid) of the difference between the stress fields r(x)
and kðxÞ, normalized by the effective equivalent stress, as a function of the total number of global iterations, in the no-hard-
ening and hardening cases, respectively. From Fig. 3(b) and (c) it can be observed that for both cases the average number of
N-R iterations decreases, as convergence is approached within each deformation step. However, in the non-hardening case,
this average number of N-R iterations starts from smaller values at the beginning of each deformation step and reaches faster
the value of 2 for every voxel. This difference reflects the approximation incurred in the hardening case by using the N–R
Jacobian given by Eq. (20). In any case, the fact that after some number of global iterations within each deformation step

Fig. 1. Equivalent stress–strain curve predicted with the EVP–FFT model using a 128 # 128 # 128 Fourier grid, for the case of a copper polycrystal with 100
grains, random texture and no strain-hardening, deformed in unixial tension up to 0.3%, and effective responses (initial elastic slope and saturated stress
lines) predicted with EL-FFT for the same elastic constants, and VP-FFT for the same viscoplastic constitutive parameters. Also shown: equivalent stress
fields predicted with EL-FFT and EVP–FFT at 0.01%, and with VP-FFT and EVP–FFT at 0.3%.

Fig. 2. Stress–strain curves predicted for the copper polycrystal, with linear hardening (H = 100 MPa), for four different values of the prescribed axial strain
rate: _E33 ¼ 10"3;10"2;10"1 and 1 s"1.

64 R.A. Lebensohn et al. / International Journal of Plasticity 32–33 (2012) 59–69

The	proposed	MSC	Alternate	Scheme	is	a	co-design	of	algorithm	
and	software	for	heterogeneous	platforms.	It	enables	scaling	of	
stress-strain	simulations	to	large	grids	by	overcoming	high	memory	
requirements	and	communication	bottlenecks.	

Phase	II:	Plans
Thrust	1:	Algorithm	improvement	
• De-noise	convolution	output

• Reduce	model	error

• Extend	to	different	datasets	with	irregular	grains

MSC-Basic	Algorithm	is	an	FFT-based	algorithm	[1]	for	
calculating	local	stress	and	strain	in	composite	materials.

The	algorithm		solves	a	PDE:

It	requires	large	amounts	of	memory	and	has	a	high	
communication	overhead	which	becomes	a	bottleneck.	

Figure 3 uses the finite element mesh as a means to view the ff-HEDM dataset. In
this case, each element in the mesh is assigned a unique ff-HEDM grain, and multiple
elements are assembled to represent the grains. The grains are then a voxellated repre-
sentation of the actual grain, where in this case no distortion has been introduced to
smooth the grain boundaries. The color of each grain represents the Grain ID field in
the ff-HEDM data. Since only the ff-HEDM data are used in this representation, the
exact morphology of the grains is not available as the element-to-grain assignment is
similar to a 3D Voronoi representation of the grain structure, differing due to the vox-
ellated nature of the elements. As the mesh density trends to infinity, the representa-
tion would converge toward an exact Voronoi representation.
Figure 4 uses the same finite element mesh to show the 69 grains used to align the

nf-HEDM data with the ff-HEDM data. In this case, the morphology of the grains is

Fig. 3 The ff-HEDM data viewed on the accompanying finite element mesh. Color represents a grain
identification number

Fig. 4 The nf-HEDM data viewed on the accompanying finite element mesh. Color represents a grain
identification number
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Approach	overview

Stress	in	crystals
Boundaries	are	critical	
regions		of		interest

Motivation

MSC-Basic	Scheme	requires	very	large	memory	as	
problem	size	scales
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II.	Data	models	 Result	highlights
Initialize

Convergence	test

Distribute	data	to	
GPUs

Compute	strain	
field	update	

Gather	data	from	
GPUs

Get	full	stress	
and	strain	field

CPU	action

Iteration
Communication
action

Communication
reduced	by	modeling

MSC-Alternate
Scheme

Proposed	Method

Communication
reduced	by	modeling

More	on	the	nature	of	Green’s	functions:	
We	observe	that	99%	energy	of	the	space-domain	
Green’s	function	is	concentrated	at	central	peak,	in	a	n3
volume,	n<<N.	Hence,	Green’s	function	can	be	truncated	
before	convolution.	
An	Ewald-type	method	may	be	employed	to	avoid	the	1%	
error,	since	errors	accumulate	in	the	iterative	PDE	solver.

Right:
N	=	512
Slice	of	3D	
component	of	
space-domain
Green’s	function

Figure 3 uses the finite element mesh as a means to view the ff-HEDM dataset. In
this case, each element in the mesh is assigned a unique ff-HEDM grain, and multiple
elements are assembled to represent the grains. The grains are then a voxellated repre-
sentation of the actual grain, where in this case no distortion has been introduced to
smooth the grain boundaries. The color of each grain represents the Grain ID field in
the ff-HEDM data. Since only the ff-HEDM data are used in this representation, the
exact morphology of the grains is not available as the element-to-grain assignment is
similar to a 3D Voronoi representation of the grain structure, differing due to the vox-
ellated nature of the elements. As the mesh density trends to infinity, the representa-
tion would converge toward an exact Voronoi representation.
Figure 4 uses the same finite element mesh to show the 69 grains used to align the

nf-HEDM data with the ff-HEDM data. In this case, the morphology of the grains is

Fig. 3 The ff-HEDM data viewed on the accompanying finite element mesh. Color represents a grain
identification number

Fig. 4 The nf-HEDM data viewed on the accompanying finite element mesh. Color represents a grain
identification number
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Example	datasets:	regular	and	irregular	shaped	grains

Stress	and	strain	fields	calculated	by	MSC	– Basic	Scheme	
and	MSC– Alternate	Scheme	are	in	agreement

Data	compression	used	to	model	grain	interior	can	reduce	
communication.																						

Next	Phase
• Algorithm	development:	

o Energy-preserving	truncation	of	the	Green’s	
operator	in	space	domain

o Grain	boundary	interactions
• Performance	test:	GPU	implementation	and	quantify	

savings	in	communication
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response	of	nonlinear	composites	with	complex	microstructure.	Computer	methods	in	
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compress
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models	
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regions

Dataset	1 Dataset	2
Dataset	1

Dataset	2

Programmed	in	FORTRAN, difficult	to	run	on	accelerators	
due	to	memory	requirement.	

Increasing	grid	resolution	is	desirable.	However,	larger	
problem	sizes	must	be	run	with	parallelized	code.	This	
requires	large	parallel	FFT	computations	which	means	high	
memory	usage	and	all-all	communication.

Problem	scale:
• 3x3	stress	and	strain	tensor	at	each	grid	point
• 9	FFTs	of	size	N3

Grid	size:	323 to	10243
Memory	requirement	 increases	32.4k times!

Solution:
Decompose	material	into	irregular	domains,	which	are	the	
grains
• memory	requirement	is	reduced	significantly
• all-all	communication	can	be	eliminated

CPU

GPU GPU GPU GPU

process
grain	1	

process
grain	2	

process
grain	3	

process
grain	4	

Nearest	neighbor
communication	
only

Each	grain	(domain)	is	assigned	to	a	GPU.	For	small	grains,	
single	GPU	can	process	multiple	grains.	Distribution	will	be	
done	using	appropriate	load	balance.	

The next section describes more details of MSC-Basic Scheme
and MSC-Alternate Scheme. This is followed by some proof-of-
concept results.

2 METHOD
In this section, we describe both simulation methods in more detail.
First, we include a short description of tensor notation.

2.1 Tensors and Tensor Notation
Einstein notation is used to represent tensor components and op-
erations. Subscripts denote the tensor components. Eg., Ai j refers
to component (i, j ) of the rank-2 tensor A. Repetition of indices
implies a summation over those particular indices. An important
tensor operation is the contraction of indices (denoted by ‘:’), which
forms lower rank tensors from higher rank tensors. This is done
by a sum over repeated indices after multiplication. Thus, Ci jkl :
Di j =

P
i

P
j
Ci jklDi j = Ekl and yields a rank-2 tensor.

2.2 MSC-Basic Scheme
The pseudocode for this method is as given below. � (x) and � (x)
refer to the strain and stress tensor �elds at point x respectively.
Ci jkl (x) is the rank-4 sti�ness tensor. E is initial average strain.
�̂mnkl (��� ) is the Green’s operator in Fourier space at frequency
point ��� . The convergence error is es and tolerance error is etol .
��kl is the computed perturbation in component (k, l ) of the strain
tensor. Superscripts indicate iteration number. The iterative scheme
continues till convergence is reached. For more details, refer to [2].

Algorithm 1MSC Basic Scheme
procedure I���������
�0  E, � 0

mn (x)  Cmnkl (x) : �0kl (x)

while es > etol do
�̂ imn (��� ) = FFT(� imn (x))
Check convergence
��̂i+1kl (��� ) = �̂klmn (��� ) : �̂ imn (��� )

Update strain: �̂i+1kl (��� )  �̂ikl (��� ) � ��̂i+1kl (��� )

�i+1kl (x)  IFFT(�̂i+1kl (��� ))

Update stress: � i+1mn (x)  Cmnkl (x) : �i+1kl (x)

2.3 MSC-Alternate Scheme
In MSC-Alternate Scheme, each grain is processed independently
using a smaller FFT and the results are combined into the orig-
inal volume at the end of each iteration. A stress update step is
performed by contraction of the sti�ness tensor with the updated
strain �eld. In the next iteration, the updated stress �eld is again
decomposed into grains and distributed. GivenG grains in the com-
posite, let (� i (x))j be the stress in grain j 2 G. The pseudocode for
MSC-Alternate Scheme is given by Algorithm 2.

A MATLAB demo implementation computes error between the
outputs of the MSC-Basic Scheme and MSC-Alternate Scheme for
various microstructures in a copper dataset. Table 2 shows error for

Algorithm 2 MSC Alternate Scheme
procedure I���������
�0  E, � 0

mn (x)  Cmnkl (x) : �0kl (x)

while es > etol do
for each grain j 2 G do

(�̂ imn (��� ))j = FFT((� imn (x))j )
Check convergence
Update strain: �(�̂i+1kl (��� ))j = �̂klmn (��� ) : (�̂ imn (��� ))j

�(�i+1kl (x))j = IFFT(�(�̂i+1kl (x))j )

Gather step: ��i+1kl =
P
j
�(�i+1kl )j

Update strain: �i+1kl (x)  �ikl (x) � ��i+1kl (x)
Update stress: � i+1mn (x)  Cmnkl (x) : �i+1kl (x)

Table 2: Error in full �eld in MSC-Alternate Scheme for dif-
ferent grids, copper microstructure

Iter.
#

% error in stress % error in strain

323 643 1283 323 643 1283

1 0.013 % 0.004 % 0.002% 0.012 % 0.003 % 0.003 %
5 0.97 % 0.066 % 0.18 % 1.02 % 0.096 % 0.13 %

Stress Component
��� 11 ��� 22 ��� 33

Approx.
Error %

0.099 0.1039 0.0599

3 grid sizes, 323, 643 and 1283 for di�erent numbers of iterations.
We conclude that output MSC-Alternate Scheme is in excellent
agreement with that of MSC-Basic Scheme.

2.4 Reduced Communication
An important observation is that the stress and strain �elds in the
grain interior are smooth but undergo more variation at the grain
boundaries. Hence, a model can be �t to the �elds in the grain
interior while leaving the �elds at the boundary uncompressed as
approximations at the boundary lead to large errors. Due to lack of
space however, modeling results are not described here.

3 CONCLUSIONS
This work demonstrates an alternate scheme designed to reduce
memory requirements of MSC-Basic Scheme. Instead of one large
3-D FFT, we perform smaller FFTs in parallel on each of the grains
of the composite. Our preliminary results show that the accuracy
of stress and strain is not signi�cantly a�ected by using MSC-
Alternate Scheme instead of MSC-Basic Scheme. Approximation to
�elds in grain interior have been considered but the next phase will
also carefully look at the grain boundary interactions, which must
happen at full resolution. Future work also includes a GPU imple-
mentation that achieves savings in communication by transmitting
models for �elds in grains rather than the full tensor �elds.
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2.2 MSC-Basic Scheme
The pseudocode for this method is as given below. � (x) and � (x)
refer to the strain and stress tensor �elds at point x respectively.
Ci jkl (x) is the rank-4 sti�ness tensor. E is initial average strain.
�̂mnkl (��� ) is the Green’s operator in Fourier space at frequency
point ��� . The convergence error is es and tolerance error is etol .
��kl is the computed perturbation in component (k, l ) of the strain
tensor. Superscripts indicate iteration number. The iterative scheme
continues till convergence is reached. For more details, refer to [2].
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2.3 MSC-Alternate Scheme
In MSC-Alternate Scheme, each grain is processed independently
using a smaller FFT and the results are combined into the orig-
inal volume at the end of each iteration. A stress update step is
performed by contraction of the sti�ness tensor with the updated
strain �eld. In the next iteration, the updated stress �eld is again
decomposed into grains and distributed. GivenG grains in the com-
posite, let (� i (x))j be the stress in grain j 2 G. The pseudocode for
MSC-Alternate Scheme is given by Algorithm 2.

A MATLAB demo implementation computes error between the
outputs of the MSC-Basic Scheme and MSC-Alternate Scheme for
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9: Update strain: �i+1kl (x)  �ikl (x) � ��i+1kl (x)
10: Update stress: � i+1mn (x)  Cmnkl (x) : �i+1kl (x)

various microstructures in a copper dataset. Table 2 shows error for
3 grid sizes, 323, 643 and 1283 for di�erent numbers of iterations.
We conclude that output MSC-Alternate Scheme is in excellent
agreement with that of MSC-Basic Scheme.

Iter.
#

% error in stress % error in strain
323 643 1283 323 643 1283

1 0.013 % 0.004 % 0.002% 0.012 % 0.003 % 0.003 %
5 0.972 % 0.066 % 0.180 % 1.020 % 0.096 % 0.130 %

Table 2: Error in full �eld in MSC-Alternate Scheme for dif-
ferent grids, copper microstructure

2.4 Reduced Communication
An important observation is that the stress and strain �elds in the
grain interior are smooth but undergo more variation at the grain
boundaries. Hence, a model can be �t to the �elds in the grain
interior while leaving the �elds at the boundary uncompressed as
approximations at the boundary lead to large errors. Due to lack of
space however, modeling results are not described here.

3 CONCLUSIONS
This work demonstrates an alternate scheme designed to reduce
memory requirements of MSC-Basic Scheme. Instead of one large
3-D FFT, we perform smaller FFTs in parallel on each of the grains
of the composite. Our preliminary results show that the accuracy
of stress and strain is not signi�cantly a�ected by using MSC-
Alternate Scheme instead of MSC-Basic Scheme. Approximation
to �elds in grain interior have been considered here, and the next
phase will carefully look at the grain boundary interactions, which
must happen at full resolution. Future work also includes a GPU
implementation that achieves savings in communication by trans-
mitting models for �elds in grains in place of full tensor �elds.
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interior while leaving the �elds at the boundary uncompressed as
approximations at the boundary lead to large errors. Due to lack of
space however, modeling results are not described here.

3 CONCLUSIONS
This work demonstrates an alternate scheme designed to reduce
memory requirements of MSC-Basic Scheme. Instead of one large
3-D FFT, we perform smaller FFTs in parallel on each of the grains
of the composite. Our preliminary results show that the accuracy
of stress and strain is not signi�cantly a�ected by using MSC-
Alternate Scheme instead of MSC-Basic Scheme. Approximation
to �elds in grain interior have been considered here, and the next
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Modeling Dataset I
• Stress in fibers

– Location (center) of fiber is known
– Radius of fiber is known

Identify smooth 
region

Compactly 
describe its 

shape
Find model for 

region

Smooth regions:
circular

Circle shape params: 
radius a, (xc,yc)

Suggests 
Polynomial 

model

40

Modeling Dataset II
• Irregular grains

– Consider example of a single grain 

Smooth regions:
not regular, so pack

rectangles

Rectangle shape 
params: (xr,yr), w, h

1. Polynomial model,
2. Spline model
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Preliminary	experiment:	Cropped	microstructure	and	
model	in	2D	plane
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Model	type	I:	Polynomial

Model	type	II:	Spline
• Piecewise	polynomial
• Cubic	spline
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Computational	aspects:	FORTRAN	interfaced	with	MATLAB	
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Results: Dataset II (single grain)
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MSC-Basic	Algorithm	is	an	FFT-based	algorithm	[1]	for	
calculating	local	stress	and	strain	in	composite	materials.

The	algorithm		solves	a	PDE:

It	requires	large	amounts	of	memory	and	has	a	high	
communication	overhead	which	becomes	a	bottleneck.	

Figure 3 uses the finite element mesh as a means to view the ff-HEDM dataset. In
this case, each element in the mesh is assigned a unique ff-HEDM grain, and multiple
elements are assembled to represent the grains. The grains are then a voxellated repre-
sentation of the actual grain, where in this case no distortion has been introduced to
smooth the grain boundaries. The color of each grain represents the Grain ID field in
the ff-HEDM data. Since only the ff-HEDM data are used in this representation, the
exact morphology of the grains is not available as the element-to-grain assignment is
similar to a 3D Voronoi representation of the grain structure, differing due to the vox-
ellated nature of the elements. As the mesh density trends to infinity, the representa-
tion would converge toward an exact Voronoi representation.
Figure 4 uses the same finite element mesh to show the 69 grains used to align the

nf-HEDM data with the ff-HEDM data. In this case, the morphology of the grains is

Fig. 3 The ff-HEDM data viewed on the accompanying finite element mesh. Color represents a grain
identification number

Fig. 4 The nf-HEDM data viewed on the accompanying finite element mesh. Color represents a grain
identification number
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Approach	overview

Stress	in	crystals
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Motivation

MSC-Basic	Scheme	requires	very	large	memory	as	
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More	on	the	nature	of	Green’s	functions:	
We	observe	that	99%	energy	of	the	space-domain	
Green’s	function	is	concentrated	at	central	peak,	in	
a	n3 volume,	n<<N.	Hence,	Green’s	function	can	be	
truncated	before	convolution.	
An	Ewald-type	method	may	be	employed	to	avoid	
the	1%	error,	since	errors	accumulate	in	the	
iterative	PDE	solver.
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exact morphology of the grains is not available as the element-to-grain assignment is
similar to a 3D Voronoi representation of the grain structure, differing due to the vox-
ellated nature of the elements. As the mesh density trends to infinity, the representa-
tion would converge toward an exact Voronoi representation.
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Example	datasets:	regular	and	irregular	shaped	grains

Stress	and	strain	fields	calculated	by	MSC	– Basic	Scheme	
and	MSC– Alternate	Scheme	are	in	agreement

Data	compression	used	to	model	grain	interior	can	
reduce	communication.																						

Next	Phase
• Algorithm	development:	

o Energy-preserving	truncation	of	the	Green’s	
operator	in	space	domain

o Grain	boundary	interactions
• Performance	test:	GPU	implementation	and	quantify	

savings	in	communication
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response	of	nonlinear	composites	with	complex	microstructure.	Computer	methods	
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Programmed	in	FORTRAN, difficult	to	run	on	accelerators	
due	to	memory	requirement.	

Increasing	grid	resolution	is	desirable.	However,	larger	
problem	sizes	must	be	run	with	parallelized	code. This	
requires	large	parallel	FFT	computations	which	means	
high	memory	usage	and	all-all	communication.

Problem	scale:
• 3x3	stress	and	strain	tensor	at	each	grid	point
• 9	FFTs	of	size	N3

Grid	size:	323 to	10243
Memory	requirement	
increases	32.4k times!

Solution:
Decompose	material	into	irregular	domains,	which	are	
the	grains
• memory	requirement	is	reduced	significantly
• all-all	communication	can	be	eliminated
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GPU GPU GPU GPU

process
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process
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process
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communication	
only

Each	grain	(domain)	is	assigned	to	a	GPU.	For	small	
grains,	single	GPU	can	process	multiple	grains.	
Distribution	will	be	done	using	appropriate	load	balance.	

The next section describes more details of MSC-Basic Scheme
and MSC-Alternate Scheme. This is followed by some proof-of-
concept results.

2 METHOD
In this section, we describe both simulation methods in more detail.
First, we include a short description of tensor notation.

2.1 Tensors and Tensor Notation
Einstein notation is used to represent tensor components and op-
erations. Subscripts denote the tensor components. Eg., Ai j refers
to component (i, j ) of the rank-2 tensor A. Repetition of indices
implies a summation over those particular indices. An important
tensor operation is the contraction of indices (denoted by ‘:’), which
forms lower rank tensors from higher rank tensors. This is done
by a sum over repeated indices after multiplication. Thus, Ci jkl :
Di j =

P
i

P
j
Ci jklDi j = Ekl and yields a rank-2 tensor.

2.2 MSC-Basic Scheme
The pseudocode for this method is as given below. � (x) and � (x)
refer to the strain and stress tensor �elds at point x respectively.
Ci jkl (x) is the rank-4 sti�ness tensor. E is initial average strain.
�̂mnkl (��� ) is the Green’s operator in Fourier space at frequency
point ��� . The convergence error is es and tolerance error is etol .
��kl is the computed perturbation in component (k, l ) of the strain
tensor. Superscripts indicate iteration number. The iterative scheme
continues till convergence is reached. For more details, refer to [2].

Algorithm 1MSC Basic Scheme
procedure I���������
�0  E, � 0

mn (x)  Cmnkl (x) : �0kl (x)

while es > etol do
�̂ imn (��� ) = FFT(� imn (x))
Check convergence
��̂i+1kl (��� ) = �̂klmn (��� ) : �̂ imn (��� )

Update strain: �̂i+1kl (��� )  �̂ikl (��� ) � ��̂i+1kl (��� )

�i+1kl (x)  IFFT(�̂i+1kl (��� ))

Update stress: � i+1mn (x)  Cmnkl (x) : �i+1kl (x)

2.3 MSC-Alternate Scheme
In MSC-Alternate Scheme, each grain is processed independently
using a smaller FFT and the results are combined into the orig-
inal volume at the end of each iteration. A stress update step is
performed by contraction of the sti�ness tensor with the updated
strain �eld. In the next iteration, the updated stress �eld is again
decomposed into grains and distributed. GivenG grains in the com-
posite, let (� i (x))j be the stress in grain j 2 G. The pseudocode for
MSC-Alternate Scheme is given by Algorithm 2.

A MATLAB demo implementation computes error between the
outputs of the MSC-Basic Scheme and MSC-Alternate Scheme for
various microstructures in a copper dataset. Table 2 shows error for

Algorithm 2 MSC Alternate Scheme
procedure I���������
�0  E, � 0

mn (x)  Cmnkl (x) : �0kl (x)

while es > etol do
for each grain j 2 G do

(�̂ imn (��� ))j = FFT((� imn (x))j )
Check convergence
Update strain: �(�̂i+1kl (��� ))j = �̂klmn (��� ) : (�̂ imn (��� ))j

�(�i+1kl (x))j = IFFT(�(�̂i+1kl (x))j )

Gather step: ��i+1kl =
P
j
�(�i+1kl )j

Update strain: �i+1kl (x)  �ikl (x) � ��i+1kl (x)
Update stress: � i+1mn (x)  Cmnkl (x) : �i+1kl (x)

Table 2: Error in full �eld in MSC-Alternate Scheme for dif-
ferent grids, copper microstructure

Iter.
#

% error in stress % error in strain

323 643 1283 323 643 1283

1 0.013 % 0.004 % 0.002% 0.012 % 0.003 % 0.003 %
5 0.97 % 0.066 % 0.18 % 1.02 % 0.096 % 0.13 %

Stress Component
��� 11 ��� 22 ��� 33

Approx.
Error %

0.099 0.1039 0.0599

3 grid sizes, 323, 643 and 1283 for di�erent numbers of iterations.
We conclude that output MSC-Alternate Scheme is in excellent
agreement with that of MSC-Basic Scheme.

2.4 Reduced Communication
An important observation is that the stress and strain �elds in the
grain interior are smooth but undergo more variation at the grain
boundaries. Hence, a model can be �t to the �elds in the grain
interior while leaving the �elds at the boundary uncompressed as
approximations at the boundary lead to large errors. Due to lack of
space however, modeling results are not described here.

3 CONCLUSIONS
This work demonstrates an alternate scheme designed to reduce
memory requirements of MSC-Basic Scheme. Instead of one large
3-D FFT, we perform smaller FFTs in parallel on each of the grains
of the composite. Our preliminary results show that the accuracy
of stress and strain is not signi�cantly a�ected by using MSC-
Alternate Scheme instead of MSC-Basic Scheme. Approximation to
�elds in grain interior have been considered but the next phase will
also carefully look at the grain boundary interactions, which must
happen at full resolution. Future work also includes a GPU imple-
mentation that achieves savings in communication by transmitting
models for �elds in grains rather than the full tensor �elds.
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space however, modeling results are not described here.
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of the composite. Our preliminary results show that the accuracy
of stress and strain is not signi�cantly a�ected by using MSC-
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3x3x3x3	stiffness	tensor

stress strain

3D	Hooke’s	law

C0
ijkluk,lj(x) + ⌧ij,j(x) = 0 (1)

Modeling Dataset I
• Stress in fibers

– Location (center) of fiber is known
– Radius of fiber is known

Identify smooth 
region

Compactly 
describe its 

shape
Find model for 

region

Smooth regions:
circular

Circle shape params: 
radius a, (xc,yc)

Suggests 
Polynomial 

model

40

Modeling Dataset II
• Irregular grains

– Consider example of a single grain 

Smooth regions:
not regular, so pack

rectangles

Rectangle shape 
params: (xr,yr), w, h

1. Polynomial model,
2. Spline model
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Preliminary	experiment:	Cropped	microstructure	and	
model	in	2D	plane
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Model	type	I:	Polynomial

Model	type	II:	Spline
• Piecewise	polynomial
• Cubic	spline

Results: Dataset I
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Model: Degree 2 Polynomial

Polynomial model of degree 2 is a good approximation for fiber 
interior, with compression ratio C = 4.65
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Runs	FORTRAN	code
Writes	data	in	each	iteration

Processes	data
in	MATLAB
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Computational	aspects:	
FORTRAN	
interfaced	with
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Results: Dataset II (single grain)
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