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ABSTRACT 2 OBJECTIVES

This paper depicts results of benchmarking a novel, cloud based
Function as a Service infrastructures, with a compute intensive load
based on Linpack. In order to obtain the results, a benchmark-
ing framework is proposed and applied to AWS Lambda, Google
Cloud Functions and IBM Cloud Functions. Results of running 1024
Linpack processes in parallel show differences between the cloud
providers and non trivial characteristics of performance and delays.
The measurements can provide a baseline for estimating serverless
application run times that can be useful for resource management.
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1 INTRODUCTION

Function-as-a-Service services are a novel offering in cloud service
provider’s portfolios. FaaS enables the end user to run and man-
age deployed applications without the need to care for physical
or virtualized infrastructure. The user is only responsible for sup-
plying the application, resource provisioning is handled by service
provider. This approach enables constructing so called serverless
applications. This paper presents research done on exploring and
evaluating the potential applications of FaaS.
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There is a significant amount of research done on new use cases for
Faa$ [1]. One of the ideas is to exploit the computing power of FaaS
by using it as an environment for running HPC applications [6]
or video encoding [3]. While not all workloads can be adapted to
run as cloud functions, means for executing workflow-type HPC
applications were proposed in [4].

In order to assess the feasibility of running a given applica-
tion on FaaS we need to determine if the application performance
will be acceptable. This can be achieved by constructing a reliable
performance model, which in turn requires the knowledge about
performance of the infrastructure. Cloud service providers rarely
supply such details as hardware configuration, usually limiting the
available information to function time limit, maximum memory
(or function size) and note that memory size affects available CPU
quota. Tested infrastructure providers follow this practice. In con-
trast to previous studies done in [5], work presented in this paper
is closer to simulating a real life application. The tested scenario
includes execution of up to 1024 function tasks in parallel. We try
to provide a baseline performance, its relation to the function size
and delays for highly parallel function spawning.

3 BENCHMARKING FRAMEWORK AND
RESULTS

The work is based on expanding a benchmarking framework pro-
posed in [5]. The new benchmark combines two aspects of previous
benchmarking suite: testing workflow execution (infrastructure pro-
visioning) and floating point performance into one. This allows for
obtaining a more complete performance characteristics of studied
infrastructures, including factors like task start delay and influence
of parallelism. The testing load is generated with Linpack, an in-
dustry standard benchmark with large set of results available for
comparison. The benchmarking application was implemented as a
workflow utilizing a bag of tasks model, which simplifies managing
multiple instances of tasks. HyperFlow([2] a proven management
engine for scientific workflows, was chosen to manage the execu-
tion. Tested cloud function providers include: Amazon (Amazon
Cloud Functions, abbr. AWS), Google (Google Cloud Functions, abbr.
GCF) and IBM (IBM Functions, abbr. IBM).

Presented results focus on two factors, the delay of starting com-
putation and achieved performance. The factors were chosen based
on their significance for building a performance model, where the
information about infrastructure availability (delays), and execution
time (performance) is crucial.

Figure 1 presents histograms of delays, encountered while run-
ning the benchmark for 512MB function size. In case of AWS the
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Figure 1: Histograms of execution delays for 512 MB function size and 1024 samples.
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Figure 2: Measured performance in relation to function size. Each histogram contains result from 1024 samples.

delays were measured to be in range of 1 to 3 seconds. In case of
IBM we have a similar chart albeit the delays concentrate around
the 15 second mark. Results for GCF show, that the delay is pro-
portional to number of task. This might be an effect of throttling
function invocations, possibly due to infrastructure provisioning
policy. At first small portion of tasks is executed instantly, while
right after the 35 seconds mark a surge of executions occurs.

Figure 2 depicts achieved performance, column wise, for each
provider. Upper charts illustrate measured performance in relation
to function size. The lower charts present histograms of perfor-
mance values for individual function sizes. Some vendors offer only
a specific function size configurations, thus not all combinations
were covered by tests.

AWS and GCF results show a direct correlation of performance
and function size, whereas IBM performance seems to be constant.
Besides the average performance, it is important to note that results
for AWS and GCF 256 do not have a single point of clustered results.
In the case of AWS 2048 achieved performance was clustered around
20 and 40 GFlops, where almost half of tasks are assigned resources
with twice the computing power. This phenomena, with a varying
relation between clusters, can be observed in other configurations
for AWS.

4 CONCLUSIONS AND FUTURE WORK

The proposed benchmark allowed to measure and document the
approximate performance available on popular Faa$ platforms. Re-
sults revealed non obvious aspects of obtained performance and an

influence of parallelism on the function start delay. Performance re-
sults, with minor differences in average values and cluster locations,
are similar to ones included in [5]. This confirms that Faa$S infras-
tructures can provide consistent results over time. Presented results
can be used as the basis for constructing performance models of
FaaS deployed applications.

This work can be extended by setting up an automated bench-
marking infrastructure. Constant benchmarking over a longer pe-
riod of time would allow to determine if the performance is invari-
ant, regardless of the cloud provider’s infrastructure load.
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