Performance evaluation of parallel cloud functions
Extended Abstract

Maciej Pawlik Kamil Figiela Maciej Malawski
AGH University of Science AGH University of Science AGH University of Science
and Technology and Technology and Technology
Krakow Krakow Krakow
m.pawlik@cyfronet.pl kfigiela@agh.edu.pl malawski@agh.edu.pl
ABSTRACT 2 OBJECTIVES

This paper depicts results of benchmarking a novel, cloud based
Function as a Service infrastructures, with a compute intensive load
based on Linpack. In order to obtain the results, a benchmark-
ing framework is proposed and applied to AWS Lambda, Google
Cloud Functions and IBM Cloud Functions. Results of running 1024
Linpack processes in parallel show differences between the cloud
providers and non trivial characteristics of performance and delays.
The measurements can provide a baseline for estimating serverless
application run times that can be useful for resource management.

CCS CONCEPTS

« Computing methodologies — Massively parallel and high-
performance simulations; - Computer systems organization
— Cloud computing; « Theory of computation — Massively
parallel algorithms; « Software and its engineering — Cloud
computing;

KEYWORDS

Performance Analysis and Optimization, Performance Tools, Clouds
and Distributed Computing

ACM Reference Format:

Maciej Pawlik, Kamil Figiela, and Maciej Malawski. 2018. Performance
evaluation of parallel cloud functions: Extended Abstract. In Proceedings of
47th International Conference on Parallel Processing (ICPP 2018). ACM, New
York, NY, USA, 2 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Function-as-a-Service services are a novel offering in cloud service
provider’s portfolios. FaaS enables the end user to run and man-
age deployed applications without the need to care for physical
or virtualized infrastructure. The user is only responsible for sup-
plying the application, resource provisioning is handled by service
provider. This approach enables constructing so called serverless
applications. This paper presents research done on exploring and
evaluating the potential applications of FaaS.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICPP 2018, August 13-16, 2018, Eugene, Oregon, USA

© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-x-xxxx-XxxX-X/YY/MM.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

There is a significant amount of research done on new use cases for
Faa$ [1]. One of the ideas is to exploit the computing power of FaaS
by using it as an environment for running HPC applications [6]
or video encoding [3]. While not all workloads can be adapted to
run as cloud functions, means for executing workflow-type HPC
applications were proposed in [4].

In order to assess the feasibility of running a given applica-
tion on FaaS we need to determine if the application performance
will be acceptable. This can be achieved by constructing a reliable
performance model, which in turn requires the knowledge about
performance of the infrastructure. Cloud service providers rarely
supply such details as hardware configuration, usually limiting the
available information to function time limit, maximum memory
(or function size) and note that memory size affects available CPU
quota. Tested infrastructure providers follow this practice. In con-
trast to previous studies done in [5], work presented in this paper
is closer to simulating a real life application. The tested scenario
includes execution of up to 1024 function tasks in parallel. We try
to provide a baseline performance, its relation to the function size
and delays for highly parallel function spawning.

3 BENCHMARKING FRAMEWORK AND
RESULTS

The work is based on expanding a benchmarking framework pro-
posed in [5]. The new benchmark combines two aspects of previous
benchmarking suite: testing workflow execution (infrastructure pro-
visioning) and floating point performance into one. This allows for
obtaining a more complete performance characteristics of studied
infrastructures, including factors like task start delay and influence
of parallelism. The testing load is generated with Linpack, an in-
dustry standard benchmark with large set of results available for
comparison. The benchmarking application was implemented as a
workflow utilizing a bag of tasks model, which simplifies managing
multiple instances of tasks. HyperFlow([2] a proven management
engine for scientific workflows, was chosen to manage the execu-
tion. Tested cloud function providers include: Amazon (Amazon
Cloud Functions, abbr. AWS), Google (Google Cloud Functions, abbr.
GCF) and IBM (IBM Functions, abbr. IBM).

Presented results focus on two factors, the delay of starting com-
putation and achieved performance. The factors were chosen based
on their significance for building a performance model, where the
information about infrastructure availability (delays), and execution
time (performance) is crucial.

Figure 1 presents histograms of delays, encountered while run-
ning the benchmark for 512MB function size. In case of AWS the

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ICPP 2018, August 13-16, 2018, Eugene, Oregon, USA

Maciej Pawlik, Kamil Figiela, and Maciej Malawski

AWS GCF IBM
103 103 103
PRULE o 1074 102]
101 4 H 10%4 ”h Hq 101 4
100
0 30 60 90 0 30 60 90 0 30 60 90
Time [s] Time [s] Time [s]
Figure 1: Histograms of execution delays for 512 MB function size and 1024 samples.
AWS GCF IBM
z 40 (] % 40 % 40 4
& 351 & 351 & 351
& 304 4 G 301 % 30
9 254 ' 9 25 o 254
€201 ‘.‘ ' [] £ 201 ' ' §209
€ 15 0 € 15 € 15
£101 0 £ 104 o £ 104
a 54 L] a 54 . a 54
0] r - - : 0 r - r " 0 r r " r
0 512 1024 1536 2048 0 512 1024 1536 2048 0 512 1024 1536 2048
Memory size [MB] Memory size [MB] Memory size [MB]
€ 400 q "n = 256 € 400 1 = 256 € 400 1 = 256
5 5 5
g 2001 L § 2007 ,,L g 2001 <
400 ﬂ = 512 400 - = 512 400 = 512
2981 b, 201 i B . ——
4901 = 1024 4001 = 1024 0 5 10 15 20 25 30 35 40 45 50
0 i a 0+ T ""v"“‘ —T—T—T—T— T Performance [GFlops]
42100: JL = 1536 0 5 10 15 20 25 30 35 40 45 50
09 1
400 1 0 2048 400 =3 2048
209 1 1 209 "
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50

Performance [GFlops]

Performance [GFlops]

Figure 2: Measured performance in relation to function size. Each histogram contains result from 1024 samples.

delays were measured to be in range of 1 to 3 seconds. In case of
IBM we have a similar chart albeit the delays concentrate around
the 15 second mark. Results for GCF show, that the delay is pro-
portional to number of task. This might be an effect of throttling
function invocations, possibly due to infrastructure provisioning
policy. At first small portion of tasks is executed instantly, while
right after the 35 seconds mark a surge of executions occurs.

Figure 2 depicts achieved performance, column wise, for each
provider. Upper charts illustrate measured performance in relation
to function size. The lower charts present histograms of perfor-
mance values for individual function sizes. Some vendors offer only
a specific function size configurations, thus not all combinations
were covered by tests.

AWS and GCF results show a direct correlation of performance
and function size, whereas IBM performance seems to be constant.
Besides the average performance, it is important to note that results
for AWS and GCF 256 do not have a single point of clustered results.
In the case of AWS 2048 achieved performance was clustered around
20 and 40 GFlops, where almost half of tasks are assigned resources
with twice the computing power. This phenomena, with a varying
relation between clusters, can be observed in other configurations
for AWS.

4 CONCLUSIONS AND FUTURE WORK

The proposed benchmark allowed to measure and document the
approximate performance available on popular Faa$ platforms. Re-
sults revealed non obvious aspects of obtained performance and an

influence of parallelism on the function start delay. Performance re-
sults, with minor differences in average values and cluster locations,
are similar to ones included in [5]. This confirms that Faa$S infras-
tructures can provide consistent results over time. Presented results
can be used as the basis for constructing performance models of
FaaS deployed applications.

This work can be extended by setting up an automated bench-
marking infrastructure. Constant benchmarking over a longer pe-
riod of time would allow to determine if the performance is invari-
ant, regardless of the cloud provider’s infrastructure load.

REFERENCES

[1] Ioana Baldini, Paul Castro, Kerry Chang, Perry Cheng, Stephen Fink, Vatche
Ishakian, Nick Mitchell, Vinod Muthusamy, Rodric Rabbah, Aleksander Slominski,
et al. 2017. Serverless computing: Current trends and open problems. In Research
Advances in Cloud Computing. Springer, 1-20.

[2] Bartosz Balis. 2016. HyperFlow: A model of computation, programming approach
and enactment engine for complex distributed workflows. Future Generation
Computer Systems 55 (2016), 147-162.

[3] Sadjad Fouladi et al. 2017. Encoding, Fast and Slow: Low-Latency Video Processing
Using Thousands of Tiny Threads. In 14th {USENLX} Symposium on Networked
Systems Design and Implementation ({NSDI} 17). {USENIX} Association, Boston,
MA, 363-376. https://www.usenix.org/conference/nsdi17/technical-sessions/
presentation/fouladi

[4] Maciej Malawski. 2016. Towards Serverless Execution of Scientific Workflows-
HyperFlow Case Study.. In WORKS@ SC. 25-33.

[5] Maciej Malawski, Kamil Figiela, Adam Gajek, and Adam Zima. 2017. Benchmarking
Heterogeneous Cloud Functions. In European Conference on Parallel Processing.
Springer, 415-426.

[6] Josef Spillner, Cristian Mateos, and David A Monge. 2017. FaaSter, Better, Cheaper:
The Prospect of Serverless Scientific Computing and HPC. In Latin American High
Performance Computing Conference. Springer, 154-168.

https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/fouladi
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/fouladi

	Abstract
	1 Introduction
	2 Objectives
	3 Benchmarking framework and results
	4 Conclusions and future work
	References

