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1 MOTIVATION
Dynamically tuning or reconfiguring operating system and archi-
tectural resources at runtime can improve performance by adapting
system operation to the current workload. We seek to address the
problems of both system modeling and dynamic system configu-
ration in the context of sequential decision processes with limited
feedback. Random profiling is a technique for sequential decision
processes with limited feedback, which can adequately and effi-
ciently capture the relationships between workload behavior, sys-
tem configuration, and performance. Along with machine learning
methods, random profiling can be used for determining descriptive
metrics for workload behavior and constructing policies which dy-
namically reconfigure the operating system and microarchitecture
at runtime. We present three such problems: system event selection,
dynamic paging mode selection, and dynamic hardware prefetcher
configuration.

2 SYSTEM EVENT SELECTION
Given the complex and interconnected nature of modern microar-
chitectures, the relationship between workload behavior metrics
and performance can be non-obvious. Due to hardware limitations,
the availability of microarchitecture performance monitoring is
limited. The Performance Monitoring Unit (PMU) exposes an inter-
face for specifying and counting microarchitectural events (which
number in the hundreds) using a small number of event counters
(typically four or eight). Therefore, selecting subset of events which
effectively measure workload behavior is challenging, and is influ-
enced by a lack of appropriate domain knowledge, ill-fitting events
exposed by the PMU, and the possibility that some events may be
inconsistent or incorrectly implemented [1].

Choosing a descriptive set of events which are relevant to work-
load behavior is a system configuration problem with limited feed-
back. As only a small subset of events can be measured at any
given time, we sample the relationship between event subsets and
a performance metric, such as Instruction per Cycle (IPC), at ran-
dom in order to extract a meaningful subset of events. We utilize
Attribute Efficient Regression (AER) [3] to construct a regression
model mapping event counts to performance, given a limit on the
number of events which can be observed simultaneously. In order
to select which events to measure, AER selects events to sample
with a probability proportional to the estimated influence an event
could have on performance.

AER models were constructed for each SPEC CPU2006 bench-
mark using the full set of PMU events (on the Sandy Bridge microar-
chitecture, which provides eight event counters). Events are ranked
according to their regression coefficients in order to describe impor-
tance. Figure 1 depicts event rankings for a subset of notable events.
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Figure 1: Importance ranking heat map for selected hard-
ware event classes: DTLB, DTLB misses; FP, scalar float-
ing point operations; MISP, branchmispredictions. For each
benchmark, higher ranked events are depicted darker.

Qualitatively, these models depict performance relationships which
are substantiated by domain knowledge: memory-intensive bench-
marks such as mcf and cactusADM rank data translation lookaside
buffer (DTLB) miss events more prominently; the rankings of scalar
floating point events (FP) readily identify the floating point bench-
marks; and graph/tree search benchmarks such as astar, gobmk,
and sjeng have high rates of branch mispredictions (MISP). By
noting differences in characteristics between workloads we can
inform the selection of meaningful event subsets.

3 DYNAMIC SYSTEM CONFIGURATION
Dynamic system configuration can be modeled as a contextual
bandit. The contextual bandit is a well studiedmethod for sequential
decision making with limited feedback [7]. At each iteration, the
bandit observes some contextual information, and uses that context,
as well as existing knowledge about the decision process, to select
an action. In response, the bandit receives a reward dependent on
both the context and selected action. Policies for action selection can
be constructed from logged data, obtained from selecting actions at
random and recording both the associated contextual information
and resulting reward. The logged data, which is an exploration of
the relationship between action and reward, can then be scavenged
in order to inform the construction of an action selection policy
which attempts to maximize reward [2, 6].

For dynamic system configuration, the contextual information
would consist of relevant workload characteristic measurements
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Figure 2: Summary of dynamic paging mode selection
benchmark execution time, normalized to Hardware-
Assisted Paging, using the static Shadow Paging and
Hardware-Assisted Paging, and dynamic DSP-OFFSET and
ASP-SVM. The geometric mean normalized time is also
given for the full SPEC CPU2006 benchmark suite.

obtained from the microarchitecture and operating system, such as
cache or memory events. Each action corresponds to the specifica-
tion of a system configuration. The reward would reflect the desired
metric to optimize, such as maximizing workload performance.
Logged data is obtained, at regular intervals, by observing work-
load characteristics, choosing a system configuration randomly,
and measuring the resulting performance. Dynamic configuration
policies can be constructed from this random profiling data using
machine learning methods, e.g., using Binary-Offset [2].

Paging Mode Selection: There are two common paging modes
used by virtual memory managers, Shadow Paging and Hardware-
Assisted Paging, each of which work well for different types of
memory access characteristics. The best performing paging mode
can vary both between programs and between phases within a
single program. Dynamic paging mode selection can improve per-
formance by adapting the system, at runtime, to use the paging
mode which favors the current workload.

We utilized the contextual bandit and random profiling to con-
struct a dynamic paging mode selection policy (DSP-OFFSET) for
the Xen virtual memory manager [4]. We first generated a train-
ing dataset by selecting paging modes randomly at 1 s intervals
for the integer workloads of the SPEC CPU2006 benchmark suite,
observing the memory access characteristics (DTLB misses and
page faults) and performance (IPC) of the current workload over
the given interval. Using Binary-Offset [2], we constructed a policy
for paging mode selection which effectively chooses paging modes
for a broad set of workload behaviors.

We evaluated the performance of DSP-OFFSET compared to the
static paging mode selections (Shadow Paging, Hardware-Assisted
Paging) and the state-of-the-art dynamic policy ASP-SVM [5] on
the full SPEC CPU2006 suite. Figure 2 illustrates the performance
for a subset of benchmarks and the average performance across
the full benchmark suite. Overall, DSP-OFFSET was competitive
in performance with ASP-SVM while requiring substantially less
profiling time (2.5 hours, compared to over 24 hours).

Hardware Prefetcher Configuration: Our dynamic system con-
figuration framework is applicable to other system configuration
problems such as hardware prefetching. Modern Intel systems are
equipped with four hardware prefetchers (per core), which can be
enabled or disabled at runtime. While the use of hardware prefetch-
ers is generally beneficial, the increased memory traffic and cache
contention can have a destructive effect on performance, especially
when considering parallel workloads in a multi-core, co-tenancy
setting. Dynamically enabling or disabling hardware prefetchers
according to a workload’s memory and cache behavior can improve
performance.

The previous problem of paging mode selection is a small and
well understood instance of dynamic system configuration. In con-
trast, hardware prefetching presents added, interesting challenges.
The configuration space is considerably larger with 24 possible
prefetcher assignments per core and decisions must be made co-
operatively across multiple cores to account for possible resource
contention and destructive cache interference from multiple, in-
dependent workloads. We propose, first, to naively consider each
hardware prefetcher in isolation so that the configuration space
remains binary and Binary-Offset [2] is directly applicable. Addi-
tional explorations include comparing independent, per-core con-
figuration policies versus a single, global configuration policy, and
developing policies which incorporate the combinatorial structure
of multiple hardware prefetchers.
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