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ABSTRACT
Political redistricting is an important operation that is done to
ensure a fair selection of electoral representatives. It can be formu-
lated as a combinatorial optimization problem. In realistic cases,
this problem can be challenging to solve due to the large number
of solutions. The effectiveness of parallel computing to more effec-
tively search the solution space is examined in specially designed
test cases where the optimal solution is known.
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ingmethodologies→Massively parallel algorithms; • Social
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1 INTRODUCTION
Gerrymandering is the process of creating electoral districts that
favor election of a particular candidate or party. In some countries,
the redistricting process is done by elected members, who can per-
form the redistricting process to favor re-election of the incumbent
and reduce the competitiveness of the electoral process. It has been
suggested that the use of computers to perform redistricting can
help obtain a fairer outcome[1, 2, 9].

One way to do redistricting for American congressional districts
is by assigning census blocks or counties to particular congressional
districts. In doing so, the main principles to be followed are:

i) A congressional district cannot entirely enclose another con-
gressional district (hole-free)
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ii) It is possible to traverse from any point in the congressional
district to any other point in the congressional district with-
out leaving the congressional district (contiguity)

iii) Congressional districts have the minimum distance between
all its parts (compactness)

iv) Approximately equal number of voters per congressional
district

v) Where possible competitive congressional districts with as
close to even partisan support

The first two principles, hole-free and contiguity, are constraints
which are usually strictly enforced[6, 9]. To capture the last three
desired principles, one defines a global objective function to capture
the effectiveness of a particular redistricting plan. An optimization
routine is then used to find a good redistricting plan.

Figure 1: Examples of the broken and the unbroken hole-
free requirement

2 PREVIOUS WORK
Recent work has introduced PEAR (Parallel evolutionary algorithm
for redistricting), that combines parallel computing with genetic
evolution to find good redistricting plans[9]. Earlier influential work
includes BARD (Better automated redistricting), an open source
R package for computational redistricting which has been used in
political science courses[2].

Previous work concludes that computers can aid in redistricting,
but not completely replace humans in the redistricting process[1].
Important geographical features and historical considerations may
be difficult to encode in an objective function that will give rise to
a reasonable set of congressional districts. The choice of objective
function for computational redistricting will also have an impor-
tant effect and further study is needed on how to best choose the
objective function for a fair redistricting plan.

From a theoretical point of view, if one assumes that the objective
function has been correctly chosen, a question of interest is what is
the amount of computational work that is required to obtain the best
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redistricting plan(s). It is expected that parallel computing can help,
but unclear what resources are necessary. The novel contribution
of this study is to examine cases where the optimal redistricting
plan is known.

3 METHODS
In this study, simulated annealing[2, 7] was used to find good re-
districting plans. An initial configuration was chosen that satisfied
the contiguity and hole free constraints. This was then evolved
for between 1000 to 5000 iterations. The configuration with the
best score was recorded. Parallelization involved running multiple
independent initial conditions in an ensemble (without interaction).
More details and source code are in [3, 4].

4 RESULTS
Sample results of finding redistricting plans are shown in table 1.
They demonstrate that parallelization can help in searching a wider
space to obtain better redistricting plans. However, the amount of
computational resources as a function of the number of districts
and counties required to have a high chance of obtaining a good
solution remains unclear.

A Parallel run Parallel run
serial 60 configurations 60 configurations
run explored explored
3 × 3 18 × 18 30 × 30

Initial configuration

Optimal configuration

Best configuration found numerically

Explored states
Optimal Parallel computing More resources

configuration helps find low score required to obtain
found but not optimal a good configuration

configuration
Table 1: Results of stochastic annealing in finding known
minimal states from randomly generated initial conditions.

5 CONCLUSIONS AND FURTHER WORK
The study presents initial results demonstrating that parallelization
can help in searching a wider space to obtain good redistricting
plans. The example programs have been written in Python and do
not have optimal computational complexity but should be easy to
update and experiment with. The results of running the programs
indicate that as found in [5], for a given objective function and
for regions with a small number of districts (such as congressional
districts for Idaho and Oregon), computer programs can obtain the
optimal redistricting plan if counties are used for redistricting. For
redistricting using census blocks and for regions with many dis-
tricts, further work is required. For the model problems introduced
in this study, an enumeration of the number of possible redistricting
plans would be very helpful in determining appropriate compu-
tational resources to use to give a high probability of finding the
optimal redistricting plan.

This study has used simulated annealing to find the optimal redis-
tricting plan. Recent computational studies indicate that genetic evo-
lution algorithms are more effective than simulated annealing[8, 9].
The reason is that simulated annealing seems to get trapped in local
optima when the solution space gets prohibitively large. Genetic
algorithms that use crossover or mixing of solutions more effec-
tively explore the solution space and are less likely to get stuck in
local optima. It would be interesting to use these in cases where the
optimal redistricting plan is known to determine their effectiveness
in real world use.
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