
A Computational Investigation of Redistricting Using Simulated Annealing
Vjatsešlav Antoškin1 and Benson K. Muite2

Abstract
Political redistricting is done to ensure fair selection of electoral rep-
resentatives. It can be formulated as a combinatorial optimization
problem. The effectiveness of parallel computing to more effectively
search the solution space is examined in specially designed test cases
where the optimal solution is known.

Introduction
Gerrymandering is the process of creating electoral districts that favor
election of a particular candidate or party. In some countries the re-
districting process is done by elected members, who can perform the
redistricting process to favor re-election of the incumbent and reduce
the competitiveness of the electoral process.
One way to do redistricting for American congressional districts is by
assigning census blocks or counties to particular congressional dis-
tricts. In doing so, the main principles to be followed are[1, 6]:

• Approximately equal number of voters per congressional dis-
trict

• Compact congressional districts

• Hole free congressional districts

• Where possible competitive congressional districts with as close
to even partisan support

To capture these principles, one defines a global objective function to
capture the effectiveness of a particular redistricting plan. An opti-
mization routine is then used to find a good redistricting plan.

Previous Work
• PEAR (Parallel evolutionary algorithm for redistricting) is a re-

cent work that combines parallel computing with genetic evo-
lution to find good redistricting plans[6, 7].

• Earlier influential work includes BARD (Better automated
redistricting) - open source R package for computational
redistricting[1].

• Human input will still be needed for redistricting[2].

Research Question
If the objective function has been correctly chosen, what is the amount
of computational work that is required to obtain the best redistricting
plan(s)?

Method
In this study simulated annealing was used to find good solutions.
An initial configuration was chosen that satisfied the contiguity and
hole free constraints. This was then evolved for between 1000 to 5000
iterations. The configuration with the best score was recorded. Par-
allelization involved running multiple independent initial conditions
in an ensemble (without interaction). More details and source code
are in [3].

Results
A Parallel run Parallel run

serial 60 configurations 60 configurations
run explored explored
3× 3 18× 18 30× 30

Initial configuration

Optimal configuration

Best configuration found numerically

Explored states
Optimal Parallel computing More resources

configuration helps find low score required to obtain
found but not optimal a good configuration

configuration

Summary
• Initial results demonstrate parallelization can help in searching

a wider space to obtain good redistricting plans.

• The example programs are written in Python and do not have
optimal computational complexity but should be easy to update
and experiment with.

• As found in [4] for states with a small number of congressional
districts (such as Idaho and Oregon), computers can obtain
good redistricting plans.

• An enumeration of the number of possible redistricting plans
would be very helpful in determining appropriate computa-
tional resources to use to give a high probability of finding the
optimal redistricting plan.

• It would be interesting to use genetic evolution algorithms in
cases where the optimal redistricting plan is known to deter-
mine their effectiveness in real world use.

References
[1] M. Altman and M.P. McDonald, “BARD: Better Automated Redistricting”, J. of

Statistical Software. 42(4), 1–28 (2011).
[2] M. Altman and M.P. McDonald “The Promise and Perils of Computers in Redis-

tricting” Duke J. Constitutional Law and Public Policy. 5, 69–111 (2010).
[3] V. Antoškin, BSC Thesis, “Analysis of a Metaheuristic for Redistricting”, University

of Tartu (2018).
[4] M.J. Kim, “Optimization approaches to political redistricting problems”, PhD The-

sis, Ohio State University (2011).
[5] S. Kirkpatrick, D.C. Gelatt and M.P. Vecchi,“Optimization by Simulated Anneal-

ing”, Science 220(4598), 671–680 (1983).
[6] Y. Liu, W.K.T. Cho and S. Wang, “PEAR: a massively parallel evolutionary compu-

tation approach for political redistricting optimization and analysis”, Swarm and
Evolutionary Computation 30, 78–92 (2010).

[7] Y. Liu, “High-performance evolutionary computation for scalable spatial optimiza-
tion”, PhD Thesis, University of Illinois at Urbana-Champaign (2017).

Acknowledgments
We thank Yan Liu for helpful discussions. This
work was carried out in the High Performance
Computing Center of the University of Tartu.

Contact
Institute of Computer Science, University of Tartu, Tartu, Estonia
[1] vjatseslav.antoskin@ut.ee [2] benson.muite@ut.ee


