
A HPC Framework for Big Spatial Data Processing and
Analytics

Extended Abstract

Anmol Paudel
Mathematics, Statistics and Computer Science

Marquette University
anmol.paudel@marquette.edu

Satish Puri
Mathematics, Statistics and Computer Science

Marquette University
satish.puri@marquette.edu

ABSTRACT
Spatial data processing and analytics is a highly data- and
compute-intensive task. Doing this in a HPC environment
has remained a challenge due to scalability issues. The scal-
ability issues usually arise due to the non-uniform nature of
spatial data which makes load balancing inefficient. Exist-
ing algorithms and systems which are sequential in nature
cannot be ported into a distributed system without tack-
ling the issue of load balancing. Porting existing algorithms
to a parallel system would also require finding their paral-
lel counterpart and rewriting code in a new language like
CUDA or refactoring them using pthreads. In our work, we
present a framework for processing and analyzing big spatial
data in a HPC environment by overcoming or diminishing
the above mentioned issues. Our work includes a way to
read the non-uniform spatial data into a MPI system using
MPI-Vector-IO. This allows us to reduce the read time of
big spatial data and get started on processing faster. Asyn-
chronous Dynamic Load Balancing (ADLB) is introduced
as a potential solution to handling the issues of load balanc-
ing during processing of the big spatial data. Moreover, we
propose using directive based programming to port the ex-
isting sequential code to run in parallel so that we can avoid
rewriting or heavy refactoring. Using OpenMP will allow
our code to run in parallel threads in the nodes extracting
more performance when possible and using OpenACC we
will be able to use any GPUs the nodes might have.

Keywords
GIS; Spatial Data; MPI IO; GPU; OpenMP; OpenACC;
ADLB;

1. INTRODUCTION
Recently there has been a huge outburst in the availabil-

ity of spatial data due to the abundance of GPS enabled
devices and satellite imagery. Processing such large volumes
of data and running analytics require a lot of time if done
sequentially or in a single machine. Vector data as defined
by Open GeoSpatial Consortium (OGC) are shapes that are
represented with points, lines and polygons. There is a very
huge variability in the size of a single shape since the size of
single shape doesn’t depend on the area it spans but rather
on the number of vertices it has. There may be no cor-
relation between the size of a single shape and its spatial
distribution. This makes data partitioning extremely hard
and require further preprocessing steps.

MPI-Vector-IO will be used to read spatial data in paral-
lel to a spatial data aware MPI environment. It will work
on distributing the raw spatial data into different nodes and
then parse them into spatial datatypes. From our experi-
ments we have found that an hour sequential operation of
scanning 2.7 billion geometries in 96 GB file takes less than
2 minutes with MPI-Vector-IO using 160 MPI processes on
GPFS parallel filesystem . Geometry Engine OpenSource
(GEOS) is being used for geometry related computations.
The library provides spatial data structures and compu-
tational geometry algorithms. The partitioned data and
GEOS allows us to process spatial data in a distributed
manner in parallel. However spatial data comes with its
own sets of challenges to scalability due to the lack of corre-
lation between the size and spatial distribution of the data.
It can become very difficult to create an implementation for
polygon based operations that have load evenly distributed
among all nodes. This creates a huge imbalance issue and
makes our parallel run time significantly higher due to some
nodes constantly running while some nodes exit early. Given
the difference in the distribution of data in different datasets
the load balancing issue can only be handled effectively dur-
ing runtime. ADLB utilizes a task stealing strategy to make
sure that if any node exhausts its load it can borrow tasks
from other nodes [1]. This allows for a more balanced dis-
tribution of tasks. However, utilization of ADLB has its
overheads and the cost associated with it still needs to be
explored in the context of spatial computing.

To write parallel code for CPUs or GPUs, usually an ex-
ternal library (like pthreads) or a new programming lan-
guage (like CUDA) are required. This has huge overheads
due to the need to refactor the sequential code or rewrite
it in a new programming language. To avoid it, we can
use directive based programming to insert hints in the form
of pragmas so the compilers can do the necessary paral-
lelization by itself. This reduces the overhead needed to
refactor or rewrite the existing sequential code. OpenMP
is a programming library for shared memory multiprocess-
ing programming in C/C++ or Fortan. It can be used to
add compiler directives to existing sequential code to create
shared memory CPU based parallelization. OpenACC is a
programming library for simplifying parallel programming
of heterogeneous CPU/GPU systems. It can be used to add
compiler directive to existing sequential code to create GPU
based parallelization.

Our aim is to be able to harness their full potential of each
node in the system by using threads spawn by OpenMP. Also



if GPUs are available in the nodes, the existing sequential
codes need to be augmented with OpenACC directives to
allow it to exploit it. We selected the line segment intersec-
tion problem as the The line segment intersection problem is
one of the most basic problem in spatial computing and all
other operations for bigger problems like polygon overlay or
clipping depends on results from it. The line segment inter-
section problem basically asks two questions - ”are the lines
intersecting or not?” and if they are intersecting ”what is the
point of intersection?” To find out the efficacy of directive
based programming the parallelization of Bentley-Ottmann
plane sweep algorithm using directives appeared to be an
appropriate experiment. CGAL (Computational Geometry
Algorithms Library) which is a state-of-the-art sequential
library for computational geometry algorithms can be the
sequential baseline upon which to test the parallel speedup
for the code.

Before venturing with a complex algorithm like plane sweep,
a naive version of the line segment intersection was coded in
C++ and then pragmas were added to create separate sam-
ples of OpenMP and OpenACC based parallelization. The
naive version is a one-on-one all-to-all approach of testing
intersections. This was done to test if line segment inter-
section was a problem suitable to test parallelization or not.
Synthetic data with varying size and intersection density
were generated to test the parallel code and get timings.

The first set of tests as shown in Table 1 is comparison
of CGAL, our naive code and OpenACC augmented naive
code on very dense set of lines. The number of intersec-
tion are significantly larger than the number of lines which
means that the lines are densely clustered with many of the
intersecting with each other.

Table 1: CGAL, naive Sequential vs OpenACC on dense lines

Lines Intersections CGAL SeqCode OpenACC
400 17164 6.64s 0.02s 2.70s
800 75212 29.25s 0.06s 2.75s
2000 468132 180.6s 0.31s 2.60s

Key takeaways from the first table are that CGAL per-
formance is not as good as the naive version either and it
worsens as the number of dense lines increases. Also we can
see that irrespective of the data size OpenACC has a base
time of a little above 2.5 seconds.

Table 2 is the same comparison as Table 1 but with a
sparse set of lines. There are only about ten percent of lines
intersecting with each other.

Table 2: CGAL, naive Sequential vs OpenACC on sparse lines

Lines Intersections CGAL SeqCode OpenACC
10k 1095 3.96s 8.19s 2.87s
20k 2068 9.64s 35.52s 2.95s
40k 4078 17.23s 143.94s 3.48s
80k 8062 36.45s 204.94s 3.87s

Key takeaway from the second table are that CGAL per-
forms significantly better than our naive code for sparse set
of lines in sequential and the increase in sequential time is
not linear with the increase in data size. OpenACC how-

ever drastically beats the sequential performance especially
in larger data sizes.

Table 3 is a comparison of how our naive code when aug-
mented with OpenMP performs as we change the number of
threads for the same set of sparse lines used in Table 2.

Table 3: OpenMP with varying thread count on sparse lines

Lines 1p 2p 4p 8p 16p 32p
10k 12.53s 6.37s 3.49s 1.95s 1.11s 0.63s
20k 58.46s 28.51s 14.44s 7.84s 4.31s 2.25s
40k 235.1s 116.63s 67.87s 31.09s 17.26s 8.73s
80k 329.13s 170.33s 93.18s 42.27s 23.95s 12.3s

Key takeaways from the third table are although the time
taken is not linear with the increase in data size, we can
see that it linearly decreases with increase in the number
of threads. This shows us that the naive approach to line
segment intersection is an embarrassingly parallel problem.

This results ascertain that line segment intersection is a
good problem to experiment with in terms of parallelizabil-
ity. Experimentation with directive based programming on
plane sweep using real geographical data should give us fur-
ther direction.

Figure 1: Design of MPI-GIS on a parallel I/O architecture.

Faster is better, but in which cases will the speedup really
matter? - in any place where the results are time sensitive
and any delay can have huge costs associated with it.

• Forecasting and predicting the trajectory of natural
disasters like hurricane or flood where the variables
are extremely random and every second is crucial for
managing evacuation, recovery or relief efforts.

• In domains like epidemiology where early action can
save thousands of lives.

• In managing ground troops, where finding alternative
routes in real-time can be mission critical.

• In locating lost airplanes, where every passing moment
makes it even more difficult.

2. REFERENCES
[1] E. Lusk, R. Butler, and S. C. Pieper. Evolution of a

minimal parallel programming model. The
International Journal of High Performance Computing
Applications, page 1094342017703448, 2017.


