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a) Generic design flow b) Realization of the design flow 

Designing Domain-Specific Heterogeneous Manycores from Dataflow Programs

C + custom instruction macros
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Summary of the Design Flow

 Developing the application in a language with support for parallelism
 CAL actor language

 Analyzing the application to identify the hot-spots
 TURNUS framework (Number of operations, execution count etc..)

 Generating hardware/software co-design 
 Hardware for the hot-spot
 Software code for the rest of the application
 Cal2Many framework (C + Chisel)

 Integrating the custom hardware to simple core and creating a tile
 The software code on the simple core
 Hot-spot on the custom hardware
 Rocket core with RoCC interface

 Connecting several tiles with a network-on-chip 
 2D mesh NoC

• Machine Learning
• Audio/Video Processing
• Wireless Communication
• Radar Signal Processing

Common properties:
• Massive data stream
• Continuous processing
• Chain of tasks
• Communication

Main requirements:
• High performance
• Low power

Typical structure of an application

Motivation/Problem

• Heterogeneous structure

Solution
Manycore architectures with cores specialized on 
certain tasks through instruction extension.

• Efficient for certain domain
• Can perform general purpose processing
• How to design?
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4x

Results
QR decomposition Autofocus criterion calculation

Conclusions
• Specialized cores provide higher performance
• Automation facilitates design of architectures and consequently exploration of design space

• 4x performance increase with accelerator
• With automatic code generation

• 4% performance loss
• 10-15 % increase in LUT and FF usage in FPGA

• 3x performance increase with accelerator
• With automatic code generation

• No performance loss
• No increase in FPGA resource usage
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