
Rocket Chip
Generator

Domain Specific
Heterogeneous Manycore

RoCC
Interface

CAL
Application

CAL2MANY

C Chisel

Rocket
Core

(RISC-V)

TURNUS

RISC-V
gcc

System
Integration

2D
Mesh
NoC

Conf
Params

Tiles

CAL code

Analysis
data

Sw code

Hw code

• Transformations

• Code generation

Application development

Profiling

Accelerator
Integration

NoC

Configuration
Parameterssw hw

Generated

Native
Compiler

Core

System Integration

Tiles

Domain Specific
Heterogeneous Manycore

Mapping

AP
PL

IC
AT

IO
N

DE

VE
LO

PM
EN

T
AN

AL
YS

IS
 A

N
D

CO
DE

 G
EN

ER
AT

IO
N

AC
CE

LE
RA

TO
R

IN
TE

G
RA

TI
O

N
SY

ST
EM

 IN
TE

GR
AT

IO
N

Mapping

Feedback
data

a) Generic design flow b) Realization of the design flow

Designing Domain-Specific Heterogeneous Manycores from Dataflow Programs

C + custom instruction macros

CAL

Chisel

Processing
core

L1 cache

RISC-V Rocket

Accelerator

RoCC
 Interface

cmd
resp
busy

interrupt

mem.req

mem.resp

Core

Memory

Accelerator

NoC
Interface

NoC
Router

Design Flow
Application Development

Profiling

Code Generation

Accelerator Integration

System Integration

Summary of the Design Flow

 Developing the application in a language with support for parallelism
 CAL actor language

 Analyzing the application to identify the hot-spots
 TURNUS framework (Number of operations, execution count etc..)

 Generating hardware/software co-design
 Hardware for the hot-spot
 Software code for the rest of the application
 Cal2Many framework (C + Chisel)

 Integrating the custom hardware to simple core and creating a tile
 The software code on the simple core
 Hot-spot on the custom hardware
 Rocket core with RoCC interface

 Connecting several tiles with a network-on-chip
 2D mesh NoC

• Machine Learning
• Audio/Video Processing
• Wireless Communication
• Radar Signal Processing

Common properties:
• Massive data stream
• Continuous processing
• Chain of tasks
• Communication

Main requirements:
• High performance
• Low power

Typical structure of an application

Motivation/Problem

• Heterogeneous structure

Solution
Manycore architectures with cores specialized on
certain tasks through instruction extension.

• Efficient for certain domain
• Can perform general purpose processing
• How to design?

Süleyman Savas - School of Information Technology, Halmstad University, Sweden

suleyman.savas@hh.se

4x

Results
QR decomposition Autofocus criterion calculation

Conclusions
• Specialized cores provide higher performance
• Automation facilitates design of architectures and consequently exploration of design space

• 4x performance increase with accelerator
• With automatic code generation

• 4% performance loss
• 10-15 % increase in LUT and FF usage in FPGA

• 3x performance increase with accelerator
• With automatic code generation

• No performance loss
• No increase in FPGA resource usage

	Slide Number 1

