
Modern scientific collaborations, like the ATLAS experiment at

CERN, produce large amounts of data that need cataloging to meet

multiple use cases and search criteria. Challenges arise in indexing

and collecting billions of events, or particle collisions, from

hundred of grid sites worldwide. In addition we face challenges in

the organization of the data storage layer of the catalog, that

should be capable of handling mixed OLTP (high-volume

transaction processing updates) and OLAP (real-time analytical

queries) use cases.

ABSTRACT

In order to overcome the challenge on the distributed data

collection of events, we have designed and implemented a

distributed producer/consumer architecture, based on an Object

Store as a shared storage, and with dynamic data selection.

Producers run at hundreds of grid sites worldwide indexing millions

of files summing up Petabytes of data, and store a small quantity

of metadata per event in an ObjectStore. Then a reference to the

data is sent to a supervisor, that signals consumers to retrieve the

data at the desired granularity and consolidate at a central

Hadoop based data backend.

In the area of the internal organization of the data, we propose an

architecture based on a NoSQL backend storage, and new data

schemas to better accommodate related data (reprocessings),

avoiding duplicate information, and improving navigation. We

propose applying memory caching techniques to improve access

times for recent loaded data, which is usually the most accessed

data by the end-user use cases.

OBJECTIVES

In order to solve the complexity and scalability problems, we have proposed, designed and implemented a new distributed producer/

consumer architecture, based on Object Store (OBS) as a shared storage, and with dynamic data selection [4]. The producer now puts all the

event index data in a OBS, without dividing the payload in various messages, and when it is done it sends a control and statistic message to a

supervisor. The supervisor is in charge of selecting the valid produced information and signaling consumers to retrieve the appropriate data

from the OBS system. This entity also takes into account the possibility of some fraction of the event processing not reaching its final state,

as it was done with the validator in the Messaging scenario.

MATERIALS AND METHODS – DISTRIBUTED DATA COLLECTION

RESULTS

CONCLUSIONS

We have presented a new pull-model approach for the distributed

data collection of the ATLAS EventIndex project, based on an

Object Store as a shared storage and with dynamic data selection.

It must be noted two key differences in this new approach. First,

the entire payload from a given producer can be potentially stored

within a single object regardless of its size, avoiding complex

issues like message groups and transactions. This avoids blockings

due to this matter, and so better workload distribution and

scalability adding new consumers when necessary. This was not

effectively possible with the messaging approach and in addition

this allows us to use different data encodings and compression,

reducing the amount of conveyed data. Second, the behavioural

change from a push-model to a pull-model. This model allows to

use the OBS as a temporary storage, eliminating the need to

consume duplicated produced data. The reduction of complexity

and the resource usage, and better performance of the distributed

data collection, has improved the experience for final users, that

have seen reduced the Traversal time, or latency, of the datasets

indexed data. Overall the results show that the new approach can

efficiently support large-scale data collection for big data

environments, like the next runs of the ATLAS experiment at CERN.

REFERENCES

[1] ATLAS Collaboration. 2008. The ATLAS Experiment at the CERN

Large Hadron Collider. Journal of Instrumentation 3, 08 (2008),

S08003.

[2] D. Barberis, S.E. Cárdenas Zárate, J. Cranshaw, A. Favareto, A.

Fernández Casaní, E.J. Gallas, C. Glasman, S. González De La Hoz,

J. Hřivnáč, D. Malon, F. Prokoshin, J. Salt Cairols, J. Sánchez, R.

Többicke, and R. Yuan. 2015. The ATLAS EventIndex: Architecture,

design choices, deployment and first operation experience.

Journal of Physics: Conference Series 664, 4 (2015), 042003.

[3] D. Barberis, J. Cranshaw, A. Favareto, A. Fernández Casaní, E.

Gallas, S. González de la Hoz, J. Hřivnáč, D. Malon, M. Nowak, F.

Prokoshin, J. Salt, J. Sánchez Martínez, R. Többicke, and R. Yuan.

2016. The ATLAS EventIndex: Full chain deployment and first

operation. Nuclear and Particle Physics Proceedings 273-275

(2016), 913–918.

[4] A Fernandez Casani, D Barberis, A Favareto, C Garcia Montoro,

S Gonzalez de la Hoz, J Hřivnáč, F Prokoshin, J Salt, J Sanchez,

Többicke, R Yuan, and ATLAS Collaboration. 2017. ATLAS

EventIndex general dataflow and monitoring infrastructure.

Journal of Physics: Conference Series 898, 6 (2017), 062010.

http://stacks.iop.org/1742-6596/898/i=6/a=062010

[5] J Sánchez, A Fernández Casaní, and S González de la Hoz.

2015. Distributed Data Collection for the ATLAS EventIndex.

Journal of Physics: Conference Series 664, 4 (2015), 042046.

[6] Tom White. 2012. Hadoop: The Definitive Guide. O’Reilly

Media, Inc.

ACKNOWLEDGEMENTS

1 Instituto de Física Corpuscular (IFIC), Universidad de Valencia and CSIC, Spain, 2 Departamento de Informática, Universidad de Valencia , Spain

Álvaro Fernández Casaní*1, Juan Orduña2, Santiago González de la Hoz1

Performance Improvements of an Event Index Distributed System

INTRODUCTION

The ATLAS experiment at CERN [1] is producing, during its Run2

phase (2015-2018), in the order of 1010 events or particle collisions

every year. This data is stored and distributedly reprocessed at

different sites worldwide using grid technologies, to extract higher

level information and store it in formats more suitable to different

uses. A catalog of data (all events in all processing stages) is

therefore needed to meet use cases like (I) locate Individual

events (event picking) depending on constraints, (II) make

consistency checks, including detection of duplicates and overlaps,

and (III) make analytic studies over large amounts of data. The

EventIndex project [2, 3] is a metadata catalogue at event level

which tries to exploit technologies such as Hadoop [6]. A small

quantity of metadata per event is indexed, including identifiers

(run/event numbers, trigger stream, luminosity block), the trigger

pattern that made the event to be recorded, and references

(pointers) to the events at each processing step in all permanent

files on storage. We developed a producer/consumer architecture

for the distributed data collection task of the EventIndex project

with a messaging implementation [5] as depicted in figure 1, that

has been indexing petabytes of input data, and has produced 150

TB of events meta data that are stored at the Hadoop

infrastructure at CERN. This system, has efficiently handled more

than 109 messages, but during high production campaings, we

detected head of line blockings on the messaging broker. Since

during the following runs starting in 2021 he production rates will

be increased, we needed to explore other collection mechanisms.

HADOOP

STOMP

ACTIVEMQ

BROKERS

PRODUCER

@GRID_SITE1

78910111213

PRODUCER

@GRID_SITE2

332211

PRODUCERS

@ TIER0

56789

CONSUMER#1

CONSUMER#2 32121

PRODUCER

@GRID_SITEN

5678910

4453464

56789

CONSUMER

@GRID_SITE1

JSON format

During operation we detected head of line blockings on messaging brokers, as can be seen on figure 2 where messages accumulate in the

backlog. There are periods when one Consumer is not getting any message even there is backlog at the broker, as can be seen in figure 3. In

that cases even when there are new instances of the consumer launched against the brokers, the consumption rate does not increase.

Messaging systems are designed to handle a large number of small messages, but our typical payload consists on large data files that have to

be divided into smaller messages. This segmentation and re-assembly procedure is complex, and it has an effect on the brokers and

consumers performance, and the scalability of the system.

Figure 1. Messaging implementation of the data collection architecture

Figure 2: Head of line blocking detection on brokers a) Messages received (blue) and forwarded

to consumers (green) by the brokers. b)Messages stored (not forwarded at a given time)

Figure 3: Messages consumed along time by

Consumer 1 (red) and Consumer 2 (green)

Figure 6 shows the performance obtained with 10 simultaneous producers writing objects of different sizes, starting from 1KB up to 1MB.

Figure 6 a) shows the system throughput. The throughput achieved is moderate, with a maximum of 150 operations per second obtained with

1KB objects. Figure 6 b) shows the bandwidth (measured in bytes per second written with different object sizes) in the Y-axis. Figure 6 b)

shows that the achieved throughput is low with small 1KB objects, but it starts increasing with objects of 100KB, reaching a stable mean of

about 12 MBytes/s with objects 512KB and up, with peaks up to 16MBytes/s.

Since the data used for benchmarking the OBS system come a real system in production, we can compare the performance of the messaging

system shown in Figure 5 to the OBS approach in Figure 10 b). From this comparison, we can state that for small payload sizes the messaging

system yields a better throughput than the OBS system. However, Figure 10 b) shows that for payload sizes equal or greater than 100KB the

OBS system yields a better bandwidth than the messaging system, which is true for our typical producer payload in the order of MB.

In Figure 7 we can see the number of collected events with the new OBS system during 3 months in production, summing up a total of 60

Billion events indexed, with peaks of 3.5 Billion events per day. The new OBS consumer improved performance an order of magnitude

compared with the Messaging one, being now capable to absorb these peaks online. The ObjectStore based solution is now the reference

implementation for the ATLAS EventIndex project, and is being currently used in production since 2018.

REMAINING OBJECTIVES
The second objective of this thesis is to design and implement a

data storage layer exploring these systems and capable to handle

OLTP and OLAP mixed workloads, to satisfy the described use

cases, and which improve the usability and performance. We are

aiming to avoid duplicate information, and provide a unique and

coherent dataset for all use cases and workloads

Now the difference is that this partial data is not being continuously pushed to

the consumers. When reaching a desired processing granularity (for example

indexing all the data from a dataset), the supervisor signals the consumer with

a control message which contains all the info needed to retrieve the data by

the latter. This allows a consumer to consolidate information in a single step,

writing a unique file in HDFS filesystem, instead of having multiple files written

by several consumers like in the messaging scenario. Only valid data is

retrieved from the OBS and consolidated into bigger, more suitable files in the

Hadoop HDFS filesystem. It reduces the amount of data that is consumed, and

so the network usage from the OBS to the final HDFS backend. We can also

avoid extra and expensive cleaning tasks on the Hadoop cluster.

 Figure 4. ObjectStore implementation of the data collection architecture

Figure 5. Messaging performance Figure 6. Object Store performance Figure 7.0 OBS system performance in collected

events per day and totals.

This work has been supported by Spanish MINECO and EU ERDF

programs under grants FPA2013-47424-C3,01,02,03, and TIN2015-

66972-C5-5-R.

(*)Corresponding author email: alvaro.fernandez@ific.uv.es

