
An Extensible Ecosystem of Tools Providing User Friendly HPC Access
and Supporting Jupyter Notebooks

Ben Glick and Jens Mache, Lewis & Clark College, Portland, OR 97219

Abstract— High performance computing systems can be hard
to use, and can require advanced knowledge of the command
line, resource managers, and other details that scientists without
a systems administration background may find distracting. In
this project, we describe our extensible ecosystem of tools
which has allowed students and researchers with minimal HPC
backgrounds to use our system with virtually no training.
Among the tools we support are (1) a web-based job submission
and management system, (2) a GUI-based file transfer and
sharing tool, and (3) a Jupyter notebook environment. Together,
these tools and the interfaces around them allow users to run
complete HPC workflows without any use of the command line.
Performance measurements show that our ecosystem incurs
marginal overhead.

I. INTRODUCTION

One challenge with HPC is ensuring that researchers
without a systems administration background are able to
easily and effectively use the HPC system. This paper
introduces our ecosystem of tools, which serves as the ”one-
stop” interface which allows users to focus on their research
without remembering a lot of commands and syntax, or
struggling with details like job submission or file systems.

II. TECHNOLOGIES

We call the interaction model we have implemented ”one-
stop shopping.” For a user, the one-stop shopping model dras-
tically simplifies the process of interacting with our cluster.
Instead of attempting to either run all of their programs over
the command line or develop programs on their computers
before uploading to the HPC system, users are able to design,
develop, and run complete workflows without any context
switching. Switching from working on a local machine such
as a laptop to working on a high-performance system is one
of the most time-consuming parts of computational science.
Users need to understand how programs run on their personal
computers differ when run on high performance systems,
how to upload and download data files and executables to
and from the system, and how to make changes to their code
on the remote systems. For many computational scientists,
these tasks are unintuitive and uninteresting. In our system,
users only need to know how to use a web browser in order
to design, implement, and run full-scale workflows on a high-
performance system.

We have designed an interface comprised of verbs that
the underlying layer must be able to carry out upon request
from tools which sit above it in the software stack. Because
of this interface, it is very easy to add new tools to our
list of modules, which makes it easy to incorporate user
feedback into the system quickly and adopt new features

Fig. 1. Diagram of the makeup of different interaction layers in our
ecosystem

and tools into the ecosystem. The lowest layer, which the
tools sit on top of, is responsible for delegating the tasks
launched by users to the worker nodes. This layer, which
is comprised of three main components, is responsible for
balancing load on the login node, delegating work to worker
nodes when possible, and ensuring that user-requested tasks
are performed as efficiently as possible.

The three aforementioned component modules are the
execution manager, the filesystem manager, and the external
data manager. The interface, which the tools in layer two
must conform to in order to be modules in the ecosystem,
ensures that all tools which are to become modules in
our system are able to interact with each one of these
components. However, some modules may not make use of
all of the components. Before a tool is added to the system,
a ”wrapper” layer needs to be written for it. This wrapper
layer allows the tool to interact with the rest of the ecosystem
and ensures that it follows the interfaces provided by the
ecosystem.

III. DISCUSSION

When designing and building our ecosystem, we consid-
ered a number of factors which had design and usability
implications.

A. Security

We have taken a multi-tiered approach to security in our
ecosystem. The first tier is to attempt to keep unwanted
users out of the ecosystem entirely, and the second tier is to



Fig. 2. Flowchart summarizing the user workflow process

make sure that even if an attacker can access the ecosystem,
they will still be locked out of any important functions and
tools. The third tier ensures that users only have access
to the specific data they own or have been given rights
to by its owner. This is important because some research
projects require access to sensitive data, and that data must be
carefully secured from users not on the project. We support
both the traditional command line interface for changing file
permissions, as well as a web-based GUI, provided through a
wrapper around OwnCloud, [1] for sharing files to users and
groups, and changing read, write, and execute permissions
on the files.

B. Usability and Extensibility

The end goal of this project is to provide a single unified
environment from which all of our users’ HPC needs are
filled, regardless of the scale of the task they are trying to
accomplish, their level of experience with HPC systems, or
their familiarity with UNIX and command line interfaces. We
believe we have taken a step towards this goal by providing
users with an ecosystem designed to offer them enough
options that they can compose, execute, analyze, and publish
their HPC workflows, as well as requesting personalized
assistance when necessary, all without ever leaving the web-
based front end of our ecosystem. One of the most important
and popular tools we have made available to users are
Jupyter[2] notebooks. Our Jupyter[3] notebook installation
is simple and easy to use.

C. Scalability

Our ecosystem is also highly scalable. Though we do not
have a larger cluster on which to install our ecosystem, we
are confident that it would be easy to replicate our setup on
a larger system with similar performance. If the cluster we
were to install our ecosystem on has only one login node,
as ours does, it would be essentially the same installation

as we have on our cluster, and would be extremely simple
to replicate. If the larger system in question has more than
one login node, the only major change we would need to
make is ensuring that an instance of each user-facing tool is
installed and running on each login node, and ensuring that
those instances of tools are able to communicate with each
other through our interface. Our interface already supports
network traffic.

IV. CONCLUSION AND FUTURE WORK
While related work about web-based access to HPC exists,

not many support Jupyter Notebooks [4], and other works
have not presented a single unified, integrated environment
in which users can design, implement, execute, analyze, and
share their HPC tasks without changes in context [5][6].
We have provided this ”one-stop shop” of useful tools and
modules to our users with minimal performance overhead.

REFERENCES

[1] A. Patawari, Getting Started with ownCloud. Packt Publishing, 2013.
[2] J. Team, What is the Jupyter Notebook?, IPython, Inc.,

USA, 2017. [Online]. Available: http://jupyter-notebook-beginner-
guide.readthedocs.io/en/latest/what is jupyter.html

[3] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. Granger, M. Bussonnier,
J. Frederic, K. Kelley, J. Hamrick, J. Grout, S. Corlay, P. Ivanov,
D. Avila, S. Abdalla, and C. Willing, “Jupyter notebooks – a publish-
ing format for reproducible computational workflows,” in Positioning
and Power in Academic Publishing: Players, Agents and Agendas,
F. Loizides and B. Schmidt, Eds. IOS Press, 2016, pp. 87 – 90.

[4] F. Pérez and B. E. Granger, “IPython: a system for interactive scientific
computing,” Computing in Science and Engineering, vol. 9, no. 3, pp.
21–29, May 2007. [Online]. Available: http://ipython.org

[5] A. Prout, W. Arcand, D. Bestor, B. Bergeron, C. Byun, V. Gadepally,
M. Hubbell, M. Houle, M. Jones, P. Michaleas, L. Milechin,
J. Mullen, A. Rosa, S. Samsi, A. Reuther, and J. Kepner,
“MIT supercloud portal workspace: Enabling HPC web application
deployment,” CoRR, vol. abs/1707.05900, 2017. [Online]. Available:
http://arxiv.org/abs/1707.05900

[6] K. Benedyczak, B. Schuller, M. P.-E. Sayed, J. Rybicki, and R. Grun-
zke, “Unicore 7 — middleware services for distributed and federated
computing,” in 2016 International Conference on High Performance
Computing Simulation (HPCS), July 2016, pp. 613–620.


