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Continuous Problem and Solution

Poisson's equation arises in such fields as astrophysics, plasma physics, electrostatics,
and fluid dynamics. We are solving it with infinite-domain boundary conditions:
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Solution of this equation, with Green's function, G:
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Method of Local Corrections (MLC)

Represent potential ¢ as linear superposition of small local discrete convolutions,

with global coupling represented using a non-iterative form of geometric multigrid.

Communication cost like that of a single iteration of multigrid.

Computational kernels are multidimensional FFTs on small domains.
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Local Discrete Convolutions

We can compute infinite-domain discrete Green’s function G"on any finite domain

at any mesh resolution 4. Compute G"=' once, store, and scale for any h.

1,if g = 0:; (Gh . fh) _ (Ah)_l(fh) fast convolution

(A"=1G =1 [g] = { 4 using 3D FFT

Scaling: G"[g] = h™1G"=1[g] (G"x fMgl= > h*G"g—4g'1f"g
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0, otherwise.
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MLC Algorithm Description

Domain decomposition strategy:
2 grid levels, fine (spacing h) and coarse (spacing H), with H/h = 4 fixed.
Decompose fine domain into fixed-sized patches of radius R = (N-1)h/2,

where N Is number of grid points along each dimension.

1. For each fine patch of radius R,
compute local convolutions on

patches of radius aR:

Example:

* patch kin red,
» blue dashed line around

patch k expanded by
factor of o= 3.25

o =G" i

+ f

on patch k on patch k
expanded by factor o

2. Accumulate coarse-grid right-hand side by summing up localized contributions:
FH = Z AH (Coarsen(p ™))
k

3. Compute global coarse convolution: ¢ = G* « F¥
4. On each patch, solve a Dirichlet problem for Poisson, with face values

Dy = Z o1 + Interp (¢ — Z Coarsen(¢); ™))
k./
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Boundary values on the red face of patch k: contributions from gb}k‘,’init on dark blue regions ,
h,init\ . .
Coarsen(¢,; ) interpolated from regions.

ior more than 2 levels, apply the above algorithm recursively.
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High-Order Mehrstellen Stencils

A discrete Laplacian stencil of radius s has form

(Ah¢h)g: Z as¢3+s

sc[—s,s]3
and truncation error look like; El=s,s]
Q/2—-1
ol — — 2 2Q" p2Q’ Q 1 Q+2 Q42
A" — Ag = izh A(Ag) + QZ_:Q B2 £29(Ag) + hQ LO+2(g) + O(h+?)
constant order 20 order O +2
stencil radius s = [ZJ linear differential operators

27-point operator: s =1, ¢ =6, C_ = 1/12
117-point operator: s =2, () =10, C = 1/12

Modifying right-hand side of A¢ = f py adding appropriate derivatives of f
gives a high-order approximation with compact stencil A”".

L (And for ¢ harmonic, truncation error is O(h%) without modifying right-hand sideb
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Solution Error
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Localization error, from representation
of smooth nonlocal coupling
* N0 dependence on derivatives

* O(1) relative to h

¢MLC o ¢ _

O(h?)
—

el

From local truncation error,

depends on local derivatives of ¢

and number of terms in Mehrstellen
correction of right-hand side.

Typically ¢ =4 or 6.

_ * can adjust «, N, @ (stencil) as needed )
~
At finest level only, reduce cost of computing —g===eeengee R S e —
local convolutions by rep|acing themonan | s T
outer annulus with fields induced by example
. with
Legendre expansions of order P. o =325
* Red + inner white (BR) region: G" * f" B =225
" . h . h
« Gray (aR — BR) reglpn. G" * Pro.JP(f ) BR
Precompute convolutions of G* with Legendre ..........................................
polynomials, and communicate only the  —q
_ coefficients for this region. Error is O(h"™"). y
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Performance Analysis

Comparison with geometric multigrid (GMG) for 27-point Laplacian operator.
GMG with 10 V-cycles, vs. MLC with ¢=4, ()=6, N=33, «=3.25, =2.25, P=3.

flops loads (in bytes) stores (in bytes) messages
Algorithm per gridpoint per gridpoint per gridpoint per phase
GMG 1210 3840 1920 20
MLC 4637+398=5035 344 351 2
4«
step 1 everything else
.
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Accuracy Tests

Uniformly refined grids: Adaptively refined grids:

max-norm of error
max-norm of error

) 1e-11 |

Test case with 3 spherical charges,
adaptive grids shown above.

| | |
256 512 1024 2048 4096

1 / hﬁnest

+1 Q=6, =3.25, N=33
O: Q=6, a=3.25, N=65
% Q=10, ¢=3.25, N=33
O: Q=10, a=3.25, N=65

2048 4096 8192 16384 32768

1 / hﬁnest

+: =6, =3.25, N=33

: (=6, =2.125, N=65
O: (=6, o=3.25, N=65
¥: (=10, =3.25, N=33
O: =10, =3.25, N=65

polynomials of degree up to P=3.
o=3.25 = B=2.25;
a=2.125 = [=1.625.

Use ¢=4, patch size N either 33 or 65. We find error O(h;_...) down to a barrier.

At finest level, project to Legendre
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Scaling Tests on NERSC Cori | (Haswell)
Numerical parameters: () = 6, N = 33, a = 3.25, with finest level = 2.25.
Plots of wall-clock time to solution (seconds). 10% longer than perfect scaling
P T+ + L 4+ A
line of perfect scaling
line of
perfect scaling
number of cores number of cores
Strong scaling: Replication weak scaling:
* fixed problem size with 10°grid points  * adaptive base case with 10°grid points
* adaptive distribution * replicated to obtain larger problems
(0.2% of domain refined at finest level) on 64 — 32K cores
* over range 64 — 4K cores, * solution error independent of scale (~7 x 10-9)
strong scaling efficiency > 60% * 92% weak scaling efficiency
¢ t|me to SOIUtion 39.1 — 97 SeCOHdS ° “me to Solution 301-424 Seconds
* largest calculation has 5.1 x 10! unknowns,
with equivalent uniform-grid resolution of
64K)3 = 2.8 x 10** unknowns.
N (649 Y
(4 N
- - 256 cores (8 nodes)
Comparison with HPGMG .
P on NERSC Cori |
¢ 6.1 sec for HPGMG with 10 V-cycles on uniform 1024° grid
(Sam Williams, private communication).
* 10.7 sec solve time for MLC on 10° grid points adaptively distributed
(0.2% of domain refined at finest level).
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For More Information

e C. Kavouklis and P. Colella, “Computation of Volume Potentials on Structured
Grids Using the Method of Local Corrections”, submitted to Comm. App. Math.
and Comp. Sci., alsoon http://arxiv.org/abs/1702.08111

* P. McCorquodale, P. Colella, G. T. Balls, and S. B. Baden, “A local corrections
algorithm for solving Poisson's equation in three dimensions”,
Comm. App. Math. and Comp. Sci., 2:57—81 (2007).

_+ Our website http://www.chombo.lbl.gov
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