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A Low-Communication Method to Solve Poisson's Equation on Locally-Structured Grids

Accuracy TestsAccuracy Tests

Scaling TestsScaling Tests

Continuous Problem and SolutionContinuous Problem and Solution

as

Poisson's equation arises in such fields as astrophysics, plasma physics, electrostatics, 
and fluid dynamics. We are solving it with infinite-domain boundary conditions:

,

Solution of this equation, with Green's function, G:

Method of Local Corrections (MLC)Method of Local Corrections (MLC)

Represent potential as linear superposition of small local discrete convolutions,
with global coupling represented using a non-iterative form of geometric multigrid.

Communication cost like that of a single iteration of multigrid.

Computational kernels are multidimensional FFTs on small domains.

Local Discrete ConvolutionsLocal Discrete Convolutions

We can compute infinite-domain discrete Green’s function Gh on any finite domain 

at any mesh resolution h. Compute Gh=1 once, store, and scale for any h.

Scaling:

MLC Algorithm DescriptionMLC Algorithm Description

Domain decomposition strategy:
2 grid levels, fine (spacing h) and coarse (spacing H), with H/h = 4 fixed.
Decompose fine domain into fixed-sized patches of radius R = (N-1)h/2,
where N is number of grid points along each dimension.

1. For each fine patch of radius R,    
compute local convolutions on 
patches of radius R:

R

R

2. Accumulate coarse-grid right-hand side by summing up localized contributions:

3. Compute global coarse convolution: 

Example:
● patch k in red;
● blue dashed line around

patch k expanded by
factor of  = 3.25

4. On each patch, solve a Dirichlet problem for Poisson, with face values

on patch k
expanded by factor 

on patch k

=
+ + +

Boundary values on the red face of patch k: contributions from             on dark blue regions ,

interpolated from light blue regions.

For more than 2 levels, apply the above algorithm recursively.

Solution Error

+

From local truncation error,
depends on local derivatives of 
and number of terms in Mehrstellen 
correction of right-hand side.
Typically q = 4 or 6.

Localization error, from representation 
of smooth nonlocal coupling
● no dependence on derivatives
● O(1) relative to h
● can adjust , N, Q (stencil) as needed

Modifying for Efficiency at Finest Level

R

R

R

example
with

= 3.25
 = 2.25

At finest level only, reduce cost of computing 
local convolutions by replacing them on an 
outer annulus with fields induced by 
Legendre expansions of order P.
● Red + inner white (R) region: Gh  f h
● Gray (R – R) region: Gh  Proj

P
(f h)

Precompute convolutions of Gh with Legendre 
polynomials, and communicate only the 
coefficients for this region. Error is O(hP+1).

● C. Kavouklis and P. Colella, “Computation of Volume Potentials on Structured 
Grids Using the Method of Local Corrections”, submitted to Comm. App. Math. 
and Comp. Sci., also on http://arxiv.org/abs/1702.08111

● P. McCorquodale, P. Colella, G. T. Balls, and S. B. Baden, “A local corrections 
algorithm for solving Poisson's equation in three dimensions”,
Comm. App. Math. and Comp. Sci., 2:57—81 (2007).

● Our website  http://www.chombo.lbl.gov

For More Information

Use q=4, patch size N either 33 or 65. We find error                 down to a barrier.
Uniformly refined grids: Adaptively refined grids:

Test case with 3 spherical charges, 
adaptive grids shown above.

At finest level, project to Legendre 
polynomials of degree up to P=3. 

= 3.25 ) = 2.25;
= 2.125 ) = 1.625.

Numerical parameters: Q = 6, N = 33,  = 3.25, with finest level  = 2.25.
Plots of wall-clock time to solution (seconds).

Strong scaling:
● fixed problem size with 109 grid points
● adaptive distribution

(0.2% of domain refined at finest level)
● over range 64 – 4K cores,

strong scaling efficiency > 60%
● time to solution 39.1 ! .97 seconds

Replication weak scaling:
● adaptive base case with 109 grid points
● replicated to obtain larger problems

on 64 – 32K cores
● solution error independent of scale (~7 x 10-9)
● 92% weak scaling efficiency
● time to solution 39.1 – 42.4 seconds
● largest calculation has 5.1 x 1011 unknowns,

with equivalent uniform-grid resolution of
(64K)3 = 2.8 x 1014 unknowns. 

on NERSC Cori I (Haswell)

A discrete Laplacian stencil of radius s has form

linear differential operators

order 2Q' order Q + 2

stencil radius

and truncation error look like:

27-point operator: s = 1, Q = 6, C
2 
= 1/12

117-point operator: s = 2, Q = 10, C
2 
= 1/12

Modifying right-hand side of by adding appropriate derivatives of f
gives a high-order approximation with compact stencil h.

(And for  harmonic, truncation error is O(hQ) without modifying right-hand side.)

High-Order Mehrstellen StencilsHigh-Order Mehrstellen Stencils

fast convolution
using 3D FFT

Q
2Q
AQ
OQ

FQ
Q

2Q
AQ
OQ

line of
perfect scaling

line of perfect scaling

10% longer than perfect scaling

number of cores number of cores

Performance Analysis

Comparison with geometric multigrid (GMG) for 27-point Laplacian operator.
GMG with 10 V-cycles, vs. MLC with q=4, Q=6, N=33, =3.25, =2.25, P=3.
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4 th order4 th order

Algorithm
flops

per gridpoint
loads (in bytes)

per gridpoint
stores (in bytes)

per gridpoint
messages
per phase

GMG 1210 3840 1920 20

MLC 4637+398=5035 344 351 2

step 1 everything else

Comparison with HPGMG 256 cores (8 nodes)
on NERSC Cori I

● 6.1 sec for HPGMG with 10 V-cycles on uniform 10243 grid
(Sam Williams, private communication).

● 10.7 sec solve time for MLC on 109 grid points adaptively distributed
(0.2% of domain refined at finest level).
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