
LINEAR TIME SORTING WITH

SPECIALIZED PROCESSOR

SORTING

REGISTERS

Specialized processor contains N (e.g., 1 billion or
1 trillion) specialized sorting registers to sort any
data set (smaller than the number of sorting
registers) in linear time. The keys may be (e.g.) 64
bit integers, floating points, or short strings.

Each sorting register (SR) has two fields, key and
location. Sorting is done based on the key value,
and original data item is found with the location
field.

Parallel Bubble Sort sorting element

PARALLEL BUBBLE

SORTING

Sorting is done alternating even and odd steps. In
even step, each key in even numbered SR is
compared to the key in the following SR, and the
register contents are interchanged if needed.
Pairwise comparisons and possible interchanges
are independent of each other, and they can be
performed massively in parallel. In odd step the
same is done for all odd numbered SRs. The same
compare circuits can be used both in even and odd
steps.

Sorting is completed in at most n steps
(Habermann 1972). Sorting may also be
completed earlier, which is observed when two
subsequent sorting steps happen without
interchanges. If the key set is already sorted,
sorting terminates immediately after the 1st two
steps. The termination test is easy to implement.
If any one of the sorting elements needs a value

interchange, it asserts the shared change signal.
The change-signal value is stored and two
subsequent not-asserted values indicate sorting to
be completed.

Parallel Bubble Sorter, even step

PBS DEVICE DRIVER

PBS can be implemented in the system (e.g.) as a
coprocessor, same way as GPUs. PBS could use
DMA or shared cache for fast main memory
access, and it would have its own operating system
device driver (DD). The DD gives PBS the key
count, key and location field types, sorting order,
and the memory location of input array, which
contains all {key, location} pairs, as well as the
address of the resulting output array. The PBS
reads the input array from memory to sorting
registers, sorts the key set and writes the sorted
registers back to memory to the designated output
array. It also returns the number of steps used in
the sort.

PBS implementation in HW and in OS

METHOD TO SORT

LARGE DATA SETS

Sorting is done (e.g.) in multiple phases. The
application first defines and extracts the input
array with n {key, location} pairs from the original
data set. The key can be any field in the data set.
Original data set may be (e.g.) a (multi-
dimensional) array or any (distributed) data
structure, in memory or in disk. The original data
set can contain much more data than just the key
fields. The application calls the PBS device driver,
which invokes the PBS to do the sorting. The PBS
reads input array from memory to sorting
registers, sorts it, and saves the resulting output
array back to memory.

Sorting with PBS, when n≤N

If needed, the device driver will split very large
input array (n>N) in size N blocks, sorts them
with PBS, and merges the results into one output
array. Finally, the application reorganizes the
original data set according to the location fields in
the output array. Alternatively, the output array
can be retained as an index to the original data
set. If the data set was originally already in wanted
order, the device driver will inform the application
about it and the application will not need to do
any actions on the original data set.

SYSTEMS WITH

MANY PBSs

If the key sets are very large, sorting can be
speeded up with many PBSs. They could be
controlled by the same device driver which first
spreads the work by giving each PBS their own
block to sort, and then merges the output arrays
from multiple PBSs before returning the control to
calling application. Another alternative would be
to implement them as separate devices under
higher level PBS device controller, just like one
device controller may control multiple hard disks.
The device controller could perform the merge
operations for the PBSs that it controls. Either
way, each individual PBS should be implemented
as large as technology allows, because sorting in
PBS has time complexity O(n), whereas merge has
time complexity O(n log(n/N)). You could expand
this even further to have multiple PBS device
controllers, each with their own set of PBSs, and
then the final sort could be left to the device
driver.

PBS device controllers, each with multiple PBSs

REFERENCES

Nico Habermann, 1972, Parallel neighbor-sort
(or the glory of the induction principle), Carnegie-
Mellon University, Technical report, August 1972,
12 p.

Teemu Kerola, Department of Computer Science, University of Helsinki

HELSINGIN YLIOPISTO

HELSINGFORS UNIVERSITET

UNIVERSITY OF HELSINKI

MATEMAATTIS-LUONNONTIETEELLINEN TIEDEKUNTA

MATEMATISK-NATURVETENSKAPLIGA FAKULTETEN

FACULTY OF SCIENCE

i:

i+1:

compare

locationkey

Sorting Registers (SR)

locationkey

0:

1:
2:

3:
4:

5:

location key
compare

compare

compare

…

location key

locationkey

locationkey

locationkey

location key

change

PBS

PBS
output
array

PBS device driver (DD)
(prosess or subroutine)

PBS hardware
logic

PBS control and
status registers

Memory bus or channel or shared cache

PBS registers

Memory CPU

PBS
result

PBS
params

PBS
input
array

key other datakey other data

0:
1:
2:
3:
4:
5:
6:
7:
8:
9:

Reorg.
original
data set

according
to location

Write
to
mem-
ory

read
to PBS
from
memory

key location

Extract

9
34
9
99
87
7
11
56
88
40

0
1
2
3
4
5
6
7
8
9

Original data set PBS input PBS output Sorted data set

key location

7
9
9
11
34
40
56
87
88
99

5
0
2
6
1
9
7
4
8
3

Sort

Application PBS Application

o
i
r
t
H
S
t
g
a
n

9
34
9
99
87
7
11
56
88
40

7
9
9
11
34
40
56
87
88
99

S
o
r
t
i
n
g
H
a
t

PBS output
PBS device
driver

PBS input

Memory CPU

PBS

PBS device
controller

PBS PBS PBS PBS

PBS device
controller

PBS PBS PBS

Memory bus or channel or shared cache

