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ABSTRACT
We present KeyBin2, a key-based clustering method that is able
to learn from distributed data in parallel. KeyBin2 uses random
projections and discrete optimizations to efficiently clustering very
high dimensional data. Because it is based on keys computed in-
dependently per dimension and per data point, KeyBin2 can scale
linearly. We perform accuracy and scalability tests to evaluate our
algorithm’s performance using synthetic and real datasets. The
experiments show that KeyBin2 outperforms other parallel cluster-
ing methods for problems with increased complexity. Finally, we
present an application of KeyBin2 for in-situ clustering of protein
folding trajectories.
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1 INTRODUCTION
Clustering high dimensional data is difficult due to the so called
"curse of dimensionality". Meanwhile scientific simulations are
generating huge amount of such high dimensional data. Climate
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simulations and high-energy physics simulations [3] produce Ter-
abytes or Petabytes data per day. Besides, privacy concerns makes
the learning more challenging [4]. Medical or financial data are
not large, but they are not allowed to transfer. We want to address
this three-fold challenge of clustering high dimensional data in
a distributed manner when they are not moved to a centralized
location.

For many learning tasks, reducing data dimensionality can accel-
erate the converge speed and often make the underlying structures
more obvious. Principle components analysis and random projec-
tion [1] provide good approximation of the distance between data
points in the projected lower dimensional spaces. However, when
the data are produced and stored on distributed locations, if they
cannot be gathered to a centralized location, these two reduction
methods may produce less effective approximations.

The goal of our research is to use dimensionality reduction tech-
niques in learning unlabeled data when the full original data are
bound to distributed locations. Our previous works [2] propose a
clustering algorithm that works on partial ordering and histograms
of data points. This algorithm learns from the data densities to
avoid pair-wise distance computations. The proposed clustering
algorithm reduces data movement overheads and protect individual
data points from being reproduced away from their native locations.
To get better accuracy, it is essential to collapse noisy features and
reduce data to lower dimensional spaces. In our current research,
we further improve the algorithm by projecting the data to much
lower dimensional spaces compared to just collapsing the noisy
features.

2 THE METHOD
We first use random projection to reduce the dimensionality dra-
matically. Fig. 1 illustrate the effect of random projection. Then
a histogram is built upon each projected dimension. To avoid in-
troducing a specific threshold parameter for building preliminary
clusters, we apply smoothing techniques on the histograms and use
the 2rd derivatives of the smoothed curves to find local minima as
partitioning points. Fig 2 illustrates the partitioning method. Due to
the random nature of random projection technique, we modify the
Calinski-Harabasz index and compute the index from data densities
to evaluate and choose the model with better clustering dispersion.
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Figure 1: (a) original 2D data points. (b)-(f) projected points
in space.

Figure 2: row1:original histogram showing 3 groups.
row2:smoothed curve over histogram. row3:1st derivatives
of smoothed histogram. row4: 2nd derivatives of smoothed
histogram. Pink dots: partitioning points.

3 EXPERIMENT RESULTS
Experiments on both synthetic and real data have shown improved
results in scalability and accuracy.
3.1 Tests on synthetic data
We run the keybin2 algorithm with high dimensional synthetic data
on distributed sites(up to 16 MPI processes). The dimensionality of
data points increases from 20 to 1280. The number of data points
increases from 5000 to 80000 per site(up to 1.2 million in total). Fig 3
shows our algorithm scales well in both cases.

Figure 3: left:scale with number of dimensions. right:scale
with number of points.

3.2 In-situ analysis on protein trajectories
We use KeyBin2 to find clusters of stable status for protein folding
trajectory data [5]. Align the clustering results with probabilities
computed from coordinates. Some results(fig 4left) are promising.
Some clusters of transition phases(fig 4right) need further study.

Figure 4: left:align transition phases of 1a0b-1 protein.
right:align transition phases of 1a70-1 protein.

4 CONCLUSIONS
In this poster we presented the improved binning clustering algo-
rithm KeyBin2. This parallel clustering algorithm uses bootstrap-
ping and random projection methods to overcome the limitation of
orthogonality assumption of our previous method (KeyBin). The
rotation effect of random projection helps to separate overlapping
clusters which are not solved in KeyBin. In this version, we elim-
inate a density threshold in the partitioning heuristics, thus pro-
ducing more robust clustering results. With these improvements,
KeyBin2 improves scalability and can deal with more complex data
than its predecessor. Experiments show that our algorithm scales
linearly when the number of data points or the dimensionality in-
creases. Finally, we show the applicability of KeyBin2 for in-situ
analysis of folding trajectories.
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