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ABSTRACT

Modern high-performance computing (HPC) systems are power-
limited. For instance, the U.S. Department of Energy has set a
power envelope of 20MW for the exascale supercomputer expected
to arrive in 2021-22. Achieving this target requires a 10.8-fold in-
crease in performance over today’s fastest supercomputer with
only a 1.3-fold increase in power consumption. As a consequence,
the architecture of an HPC system is changing rapidly—e.g., via
heterogeneity and hardware overprovisioning. In my thesis, I ad-
dress (i) modeling, (ii) management, and (iii) evaluation challenges
concerning power and energy in this changing landscape of HPC
systems. In this extended abstract, I focus on my work on modeling
data movement power over interconnect wires.

1 INTRODUCTION

Historically, the high-performance computing (HPC) community

has considered performance as the only primary design criterion [6].

In fact, even the notion of efficient supercomputing was viewed as

a controversial topic when it was proposed in 2003 [5]. However,

with the power consumption of the fastest supercomputers rapidly

increasing !, power and energy have emerged as first-order design
criteria alongside performance. For instance, the U.S. Department
of Energy has set a power envelope of 20MW for the exascale su-
percomputer expected to arrive in 2021-22. Achieving this target
requires a 10.8-fold increase in performance over today’s fastest
supercomputer with only a 1.3-fold increase in power consumption.

As such, we are now in the era of power-constrained supercomput-

ing, where we seek to maximize the performance obtained by a

supercomputer under some strict power constraint. To do so, we

need to: (i) understand where power is being spent in today’s hard-
ware and (ii) manage the power consumed efficiently. In my thesis,

I make the following contributions to support power-constrained

supercomputing:

e Accurate online power estimation for graphics processors.
In this work [4], we develop performance counter-based power
models which are then refined at runtime using data from a low-
resolution power meter in order to achieve high accuracy and
high resolution for GPU power measurement. While adopting
the best practices from CPU power modeling results in an average
error of 6%, our online power modeling approach reduces the
error to nearly 1%.

e Targeted microbenchmarking to measure data movement
power. Past research on measuring data movement power on
real hardware [8] failed to distinguish data movement power
from data access power. In our work([3], we developed a novel
approach based on the physical distance of data movement to

!The mean power consumption of the Top 500 supercomputers nearly trebled over a
five-year period from 2008 to 2013 [1]

measure interconnect power accurately and study its charac-
teristics. Our evaluation shows that up to 14% of the dynamic
power is consumed by the interconnect (which is less than what
previous studies have suggested).

e Power sloshing to maximize performance of a power-capped
system. In this proposed work, we seek to improve the perfor-
mance of a power-capped system by (i) identifying the archi-
tectural component acting as the power (or energy) bottleneck
and (ii) alleviating the bottleneck by making more power (or
energy) available to these components. We propose to perform
this re-allocation of power budgets dynamically at runtime aided
by application phase prediction [7].

e Principled evaluation of proposed techniques via PCA and
clustering To evaluate any idea in the systems area, we need
to choose test cases carefully. To systematically select a concise,
but useful, set of applications for evaluating the techniques we
employ statistical methods such as principal component analysis
(PCA) and hierarchical clustering [2]. Our evaluation shows that
the four benchmark suites we studied (namely, Parboil, SHOC,
Rodinia, and SPEC ACCEL) contains significant redundancy, and
we can perform a thorough evaluation using only a fraction of
the applications in these benchmark suites.

The rest of this extended abstract focuses on my work on measuring

interconnect power on real hardware.

2 METHODOLOGY

Figure 1: Design of our interconnect power microbench-
marks

Our microbenchmarking methodology is based on the observa-
tion that longer wires consume more energy than shorter wires
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while carrying the same current. Therefore data that travels a longer
physical distance within the chip consumes more energy than the
same amount of data moving a shorter distance.

Our conjecture based on the above observation is that when
we continuously move data from a partition of the L2 cache to
the various L1 caches that are located in the different parts of the
chip, we should observe a difference in power consumption. To
test this conjecture, we design two microbenchmarks, illustrated
in Figure 1. The first (referred to as short-path) continuously
moves data between compute units (CUs) in shader engine I and
the L2 quadrant closest to it. The second (referred to as long-path)
moves the data between shader engine II and the same L2 quadrant,
thereby moving the data through a longer physical distance.

Verification. When the above microbenchmarks were im-
plemented on a AMD FirePro W9100 GPU, we found that long-
path consumes 5% more chip-wide dynamic power than short-path,
thereby confirming our conjecture.

Interconnect Power Model. Using our microbenchmark de-
sign approach, we characterized the impact of several important
parameters—e.g., data movement distance, toggle rate, voltage, fre-
quency, and interconnect bandwidth—on interconnect power. The
characterization results were then combined into a parameterized
equation which naturally lends itself to model interconnect power
of larger applications, different chips, and different technology
nodes. The general form of the parameterized equation can be
expressed as follows:

Interconnect Power = Constant X % Peak Bandwidth X Toggle
Rate x Distance x Scaled Frequency X Scaled Voltage?

where Constant refers to the maximum power consumed by the
interconnect for a given chip and a reference DVFS state.

3 RESULTS

In this section, we present the interconnect power of 22 OpenCL
applications obtained from various sources. The results are pre-
sented for the 28 nm AMD FirePro W9100 GPU architecture and a
hypothetical 7 nm shrink of the same die.
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Figure 2: Percentage of the total dynamic power spent on
the interconnect.

Figure 2 shows the power spent on the different parts of the
interconnect, expressed as a percentage of overall dynamic power.
Across applications, the on-chip interconnect consumes 5.6% of
the total dynamic power on our GPU on an average. Within the
interconnect, register to L1 consumes the most power, using over
45% of the total interconnect power. The crossbar between L1 and
L2 consumes 30% of the total interconnect power and the rest is
consumed by MC to L2.
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Among all applications, color shows the highest percentage of
14.3% for interconnect power. This is due to the fact that color is an
irregular application with many branch and memory divergence,
causing large amount of data accesses at different levels of the
memory hierarchy. Comd-lj, kmeans, lulesh, and scan also consume
significant amount of interconnect power, with over 10% of the
overall dynamic power going towards the interconnect. Of these,
kmeans, lulesh, and scan are either memory-bound or partially
memory-bound, and understandably consume a greater amount
of interconnect power as data has to be frequently fetched from
the distant memory. Comd-Ij is largely compute-bounded with
most data accesses either going to register file or L1. Although the
distance between the SIMD units and L1 is relatively small, it still
has a significant amount of power spent in data movement because
of the high data access counts to L1.

On the other extreme, applications such as mandelbulb, monte-
carlo, and nbody all consume nearly zero interconnect power. These
are all compute-bounded, but unlike comd, the working set for
these applications fits within the register files and therefore doesn’t
access L1 much. Therefore, they avoid short distance accesses as
well and see a lower data movement power.

On the 7 nm architecture, the trends remain the same. But, the
interconnect consumes 8.9% of the total dynamic power across appli-
cations. Individually, we see up to 21.9% for interconnect power as
in the case of color. These values correspond to nearly 59% increase
in the interconnect power for real applications. This highlights that
data movement is going to be an even more significant problem in
future GPUs.

4 CONCLUSION

In this work, we described a novel methodology to measure the
interconnect power in real processors. We also characterized the
interconnect power of 22 applications both in 28 nm technology
and in a hypothetical 7 nm node. We showed that up to 14% of the
dynamic power in these applications is spent on the interconnect
which may increase up to 22% in the 7 nm node.
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