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ABSTRACT
Modern high-performance computing (HPC) systems are power-

limited. For instance, the U.S. Department of Energy has set a

power envelope of 20MW for the exascale supercomputer expected

to arrive in 2021-22. Achieving this target requires a 10.8-fold in-

crease in performance over today’s fastest supercomputer with

only a 1.3-fold increase in power consumption. As a consequence,

the architecture of an HPC system is changing rapidly—e.g., via

heterogeneity and hardware overprovisioning. In my thesis, I ad-

dress (i) modeling, (ii) management, and (iii) evaluation challenges

concerning power and energy in this changing landscape of HPC

systems. In this extended abstract, I focus on my work on modeling

data movement power over interconnect wires.

1 INTRODUCTION
Historically, the high-performance computing (HPC) community

has considered performance as the only primary design criterion [6].

In fact, even the notion of e�cient supercomputing was viewed as

a controversial topic when it was proposed in 2003 [5]. However,

with the power consumption of the fastest supercomputers rapidly

increasing
1
, power and energy have emerged as �rst-order design

criteria alongside performance. For instance, the U.S. Department

of Energy has set a power envelope of 20MW for the exascale su-

percomputer expected to arrive in 2021-22. Achieving this target

requires a 10.8-fold increase in performance over today’s fastest

supercomputer with only a 1.3-fold increase in power consumption.

As such, we are now in the era of power-constrained supercomput-

ing, where we seek to maximize the performance obtained by a

supercomputer under some strict power constraint. To do so, we

need to: (i) understand where power is being spent in today’s hard-

ware and (ii) manage the power consumed e�ciently. In my thesis,

I make the following contributions to support power-constrained
supercomputing:

• Accurate online power estimation for graphics processors.
In this work [4], we develop performance counter-based power

models which are then re�ned at runtime using data from a low-

resolution power meter in order to achieve high accuracy and

high resolution for GPU power measurement. While adopting

the best practices fromCPU powermodeling results in an average

error of 6%, our online power modeling approach reduces the

error to nearly 1%.

• Targetedmicrobenchmarking tomeasure datamovement
power. Past research on measuring data movement power on

real hardware [8] failed to distinguish data movement power

from data access power. In our work[3], we developed a novel

approach based on the physical distance of data movement to

1
�e mean power consumption of the Top 500 supercomputers nearly trebled over a

�ve-year period from 2008 to 2013 [1]

measure interconnect power accurately and study its charac-

teristics. Our evaluation shows that up to 14% of the dynamic

power is consumed by the interconnect (which is less than what

previous studies have suggested).

• Power sloshing tomaximize performance of a power-capped
system. In this proposed work, we seek to improve the perfor-

mance of a power-capped system by (i) identifying the archi-

tectural component acting as the power (or energy) bo�leneck

and (ii) alleviating the bo�leneck by making more power (or

energy) available to these components. We propose to perform

this re-allocation of power budgets dynamically at runtime aided

by application phase prediction [7].

• Principled evaluation of proposed techniques via PCAand
clustering To evaluate any idea in the systems area, we need

to choose test cases carefully. To systematically select a concise,

but useful, set of applications for evaluating the techniques we

employ statistical methods such as principal component analysis

(PCA) and hierarchical clustering [2]. Our evaluation shows that

the four benchmark suites we studied (namely, Parboil, SHOC,

Rodinia, and SPEC ACCEL) contains signi�cant redundancy, and

we can perform a thorough evaluation using only a fraction of

the applications in these benchmark suites.

�e rest of this extended abstract focuses on my work on measuring

interconnect power on real hardware.

2 METHODOLOGY

Figure 1: Design of our interconnect power microbench-
marks

Our microbenchmarking methodology is based on the observa-

tion that longer wires consume more energy than shorter wires



ICPP ’18, August 13–16, 2018, Eugene, Oregon, USA Vignesh Adhinarayanan

while carrying the same current. �erefore data that travels a longer

physical distance within the chip consumes more energy than the

same amount of data moving a shorter distance.

Our conjecture based on the above observation is that when

we continuously move data from a partition of the L2 cache to

the various L1 caches that are located in the di�erent parts of the

chip, we should observe a di�erence in power consumption. To

test this conjecture, we design two microbenchmarks, illustrated

in Figure 1. �e �rst (referred to as short-path) continuously
moves data between compute units (CUs) in shader engine I and

the L2 quadrant closest to it. �e second (referred to as long-path)
moves the data between shader engine II and the same L2 quadrant,

thereby moving the data through a longer physical distance.

Veri�cation. When the above microbenchmarks were im-

plemented on a AMD FirePro W9100 GPU, we found that long-

path consumes 5% more chip-wide dynamic power than short-path,

thereby con�rming our conjecture.

Interconnect Power Model. Using our microbenchmark de-

sign approach, we characterized the impact of several important

parameters—e.g., data movement distance, toggle rate, voltage, fre-

quency, and interconnect bandwidth–on interconnect power. �e

characterization results were then combined into a parameterized

equation which naturally lends itself to model interconnect power

of larger applications, di�erent chips, and di�erent technology

nodes. �e general form of the parameterized equation can be

expressed as follows:

Interconnect Power = Constant × % Peak Bandwidth × Toggle

Rate × Distance × Scaled Frequency × Scaled Voltage
2

where Constant refers to the maximum power consumed by the

interconnect for a given chip and a reference DVFS state.

3 RESULTS
In this section, we present the interconnect power of 22 OpenCL

applications obtained from various sources. �e results are pre-

sented for the 28 nm AMD FirePro W9100 GPU architecture and a

hypothetical 7 nm shrink of the same die.
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Figure 2: Percentage of the total dynamic power spent on
the interconnect.

Figure 2 shows the power spent on the di�erent parts of the

interconnect, expressed as a percentage of overall dynamic power.

Across applications, the on-chip interconnect consumes 5.6% of

the total dynamic power on our GPU on an average. Within the

interconnect, register to L1 consumes the most power, using over

45% of the total interconnect power. �e crossbar between L1 and

L2 consumes 30% of the total interconnect power and the rest is

consumed by MC to L2.

Among all applications, color shows the highest percentage of
14.3% for interconnect power. �is is due to the fact that color is an
irregular application with many branch and memory divergence,

causing large amount of data accesses at di�erent levels of the

memory hierarchy. Comd-lj, kmeans, lulesh, and scan also consume

signi�cant amount of interconnect power, with over 10% of the

overall dynamic power going towards the interconnect. Of these,

kmeans, lulesh, and scan are either memory-bound or partially

memory-bound, and understandably consume a greater amount

of interconnect power as data has to be frequently fetched from

the distant memory. Comd-lj is largely compute-bounded with

most data accesses either going to register �le or L1. Although the

distance between the SIMD units and L1 is relatively small, it still

has a signi�cant amount of power spent in data movement because

of the high data access counts to L1.

On the other extreme, applications such as mandelbulb, monte-
carlo, and nbody all consume nearly zero interconnect power. �ese

are all compute-bounded, but unlike comd, the working set for

these applications �ts within the register �les and therefore doesn’t

access L1 much. �erefore, they avoid short distance accesses as

well and see a lower data movement power.

On the 7 nm architecture, the trends remain the same. But, the

interconnect consumes 8.9% of the total dynamic power across appli-

cations. Individually, we see up to 21.9% for interconnect power as

in the case of color. �ese values correspond to nearly 59% increase

in the interconnect power for real applications. �is highlights that

data movement is going to be an even more signi�cant problem in

future GPUs.

4 CONCLUSION
In this work, we described a novel methodology to measure the

interconnect power in real processors. We also characterized the

interconnect power of 22 applications both in 28 nm technology

and in a hypothetical 7 nm node. We showed that up to 14% of the

dynamic power in these applications is spent on the interconnect

which may increase up to 22% in the 7 nm node.
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