Interval based Framework for Locking in Hierarchies

Saurabh Kalikar and Rupesh Nasre; IIT Madras, India. {saurabhk, rupesh}@cse.iitm.ac.in

1 HIERARCHIES AND HIERARCHICAL
LOCKING

Hierarchies are special linked structures, where each child node
denotes a specialization or a part of its parents. For instance, node
representing a department in an academic hierarchy is a part of
its parent institute. Conversely, a node representing an institute
contains all its departments. Hierarchical locking is a way to lock
anode in a hierarchy which implicitly locks its descendants. This
is useful because the whole sub-hierarchy rooted at a node can
be protected using a single lock. A node could be hierarchically
locked only if (i) it is not locked by any other thread, and (ii) none
of its descendants are currently locked by any other thread, and
(iii) none of its ancestors are currently locked by any other thread.
For instance, in Figure 1, hierarchical locking of node G requires
that no other thread currently holds locks on (i) G itself, (ii) its
descendant nodes M and N, and (iii) its ancestors A and C.

However, as an implementation, hierarchical locking poses var-
ious challenges. First is the design of an efficient mechanism to
quickly check these hierarchical overlaps. Clearly, the naive mecha-
nism of traversing through the descendants and ancestors for every
lock request works, but is impractical. Second is the design of a
lock manager for maintaining the granted and the waiting lock
requests. Third, the hierarchical locking should be well suited for
the structural modifications to the hierarchy. Traditionally, inten-
tion locks [1] have been used to restrict locks on a node if there is
a lock acquired on at least one node in the sub-hierarchy. In the
next section, we present our interval based hierarchical locking
technique and show how it tackles all these challenges.

2 INTERVAL BASED LOCKING

Logical intervals. We use a bottom-up interval numbering scheme
for hierarchies. In this scheme, each node is assigned an interval
[low, high]. First, the leaf nodes are numbered with unique intervals
[i, i]. Then, the intervals of the leaf nodes are propagated to their
ancestor nodes level by level up to the root node. The intervals
possess certain properties which are useful for hierarchical locking.
(i) The intervals of two nodes overlap if and only if the two nodes
have a common reachable descendant node. (ii) If the interval of a
node nj completely subsumes that of ny, then nj is a dominator of ny
(that is, all the paths from root to ny pass via np). (iii) If two intervals
do not overlap, their corresponding nodes can be simultaneously
locked. Figure 1 shows the [low, high] intervals associated with
each node. Since intervals of nodes D and E (that is, [1, 2] and [1,
4] respectively) overlap, it indicates that there exists a common
descendant node (nodes H and I). Therefore, D and E cannot be
locked simultaneously by two threads (otherwise, there can be a
data-race at nodes H and [, leading to transactional inconsistency).
Further, since the intervals of nodes D and G (that is, [1, 2] and [6, 7]
respectively) do not overlap, they can be concurrently locked using
a multi-granularity protocol (MGL). In the case of cycles, every
pair of cycle nodes has an ancestor-descendant relation. Therefore,

AT

[1,4] 15.7]

\[1.4

P] 1% Ny
“ @ea @
\
o Ry Y v ¥
OO0 0 ® ©
[1.1] [22] [3,3] [4,4] [5,5] [6,6] [7,71

Figure 1: Example hierarchy

each cycle node receives the same interval value (which is logically
equivalent to collapsing the cycle). In this way, the logical intervals
allow us to quickly check the hierarchical overlaps.

Lock Manager. The lock manager maintains locks in the form of
numbered intervals. Unlike the conventional design of lock man-
agers whihch is implemented as a hashed index of resources and
waiting queues, we index our pool of locks according to thread-ids.
Thus, every thread has a specific location where it inserts its lock
entries. The lock acquisitions by multiple threads happen in paral-
lel as follows. Initially, each thread requesting for locks receives a
unique sequence number (such as timestamp of request), and its
lock intervals are atomically inserted into respective positions. The
lock intervals for each thread are maintained in sorted order to
avoid deadlocks. After insertion, each thread independently checks
whether there is any conflicting entry in the lock-pool having a
smaller sequence number. If the thread does not find any such over-
lap, the lock on all the inserted intervals is granted. Otherwise, the
thread needs to try again later. Ideally, the insertion of intervals
and the overlap check should happen atomically to restrict any
concurrent insertion from other threads. However, this demands
heavy-weight reader-writer locks. We remove this synchronization
bottleneck by careful use of sequence numbers and pointer manip-
ulations, which allow us to check overlaps in lock-free manner.

Structural modifications. Our technique supports structural up-
dates to the underlying hierarchy which do not change its root.
Link updates, i.e., insertion or deletion of an edge between any two
nodes, poses more challenges in maintaining hierarchical semantics
and the interval subsumption property. While inserting an edge
u — v, we first find a set S of only those ancestors of node u (in-
cluding u) whose interval values need to be changed because of the
insert operation. Therefore, an exclusive lock has to be acquired
on the dominator of S and executes insertion process followed by
update to the interval values of the ancestor nodes G € S. Once
we acquire the lock on the dominator of S, it ensures that no other
thread is concurrently operating on any of the ancestors. For in-
stance, the addition of edge G — L in Figure 1 populates the set
as S = {G}. We acquire an exclusive lock on G and update the
intervals of G to [5, 7]. In the case of deletion of an edge u — v,
we acquire an exclusive lock only on node u and delete the edge.
Unlike insertion, deletion of an edge need not necessarily trigger
update to parent’s intervals, because intervals of parents follow the
subsumption property even if a child link is deleted. For instance,

K=1
K

/

Locking options | Locking cost | Concurrency cost
1 {H,], M, N} 4 0
2 {G.H,J} 0 ;
3 {EMN} 3 1
4 {B, C} 2 3 . f !
5 {E, G} 2 1 0
6 (A} 1 3 3\

i K=4 (15,20

20 20.5 21

Figure 2: (a) All possible locking options (b) Pareto-optimal options (c) Hi-Fi interval propagation

the deletion of the edge G — M in Figure 1 need not necessarily
update G’s interval to [7, 7] for correctness, although doing that
would improve concurrency.

3 SPECIAL CASES OF HIERARCHICAL LOCKS

DomLock [3]. The operations accessing more than one node in
the hierarchy incur high locking overhead due to the number of
overlap checks. DomLock suggests that if locking request consists
of multiple nodes, then lock the immediate common dominator
node of all the requested nodes. Consider a locking request with
nodes L and N. DomLock finds their immediate common dominator
C using intervals and the subsumption property. Actual locking
happens by keeping track of the interval value of the dominator
node in the lock pool, (which is C[5, 7]) and ensuring that none of
the intervals of the locked nodes overlaps with [5, 7]. Therefore,
DomLock has unit locking cost. Note that, locking the dominator
locks an extra node M which introduces an extra concurrency
cost (by losing concurrency). In many real-world cases, DomLock
in spite of incurring concurrency cost outperforms the existing
hierarchical locking technique intention locks [1] because of efficient
hierarchical locking.

NumlLock [4]. DomLock may incur high concurrency cost if the
requested nodes are far apart in the hierarchy. For instance, the
dominator of node H, N is the root node which locks whole hier-
archy. Here, instead of the root, locking H and N separately could
be a better option. NumLock systematically addresses this issue.
There could be multiple ways to serve a locking request. Consider
a locking request for nodes {H, J, M, N}. Figure 2(a) shows differ-
ent locking options for the request. The number of such options
could be exponentially large in number. We target the problem
in two stages: 1. Generate a set of few pareto-optimal locking op-
tions (highlighted in Figure 2 (a)) 2. Apply a cost model to pick the
best one among those. Stage 1 sorts the intervals of the nodes to
be locked and gradually merges two intervals into one with least
merging cost. In Figure 2(b) each level shows one pareto-optimal
option. Stage 2 applies the cost model to compare these options.
The cost model pinpoints the one with minimum overall execution
time by considering various parameters such as, locking cost, size
of critical section, number of parallel threads, and contention index.

Hi-Fi [2]. Simultaneous handling of hierarchical and fine-grained
requests poses new challenges in checking for racy requests. We
propose a new interval indexing technique for hierarchies which
uniquely identifies every node as an interval value and effectively
captures hierarchical dependences between nodes of the hierarchy.
If the operation is local to the node, say update of some attribute

35 =%=NumLock

~+—DomLock 0 "

0| ®NumLock
m I I I I I
1 2 s i 16

Number of threads

Intention Locks
25| =4 Optimal

Execution time(second)
\H
"
Throughput (operations/second)

0 2 4 & 8 10 120 140
Number of Locked Nodes

Figure 3: Performances of various locking techniques

value, then acquiring a hierarchical lock adversely affects paral-
lelism. For instance, a fine-grained lock on node F in Figure 1,
should only lock node F but not L. Presence of both hierarchical
and fine-grained locking semantics is tricky. In Figure 1, more than
one node can get the same interval, hence the logical intervals alone
can not distinguish between two nodes uniquely. For the unique
identification, we move from integer numbers to floating point
intervals. Figure 2(c) shows an intermediate stage in the interval
numbering process. Here, both h and i subsume the child node m
and partially overlap each other. Hi-Fi modifies the locking protocol
as follows: (i) A node is allowed to lock in fine-grained mode if
the interval of the node is not subsumed by any existing locked
interval in non-compatible mode. (ii) A node is allowed to lock
in hierarchical mode if the interval of the node does not overlap
with any interval locked in non-compatible mode. In this way we
achieve both hierarchical and fine-grained locking.

4 EXPERIMENTATION

Our locking framework provides a way to compare different in-
stances of hierarchical locking. Figure 3 shows the execution time
taken by each technique with 32 parallel threads each executing
1000 operations by varying number of nodes locked. We observe
that the time taken by intention locks (IL) grows linearly with the
number of locked nodes. On the other hand, although DomLock
takes more time, it remains fixed. NumLock actually balances IL
and DomLock and outperforms both these techniques.

We also implement interval based hierarchical locking technique
as part of STMBench7. We compare DomLock, NumLock, and built-
in coarse-grained and medium-grained locking techniques in STM-
Bench7. NumLock achieves on an average 25% throughput improve-
ment over DomLock.

REFERENCES

[1] J.N. Gray, R. A. Lorie, and G. R. Putzolu. 1975. Granularity of Locks in a Shared
Data Base. In VLDB 1975. ACM, New York, NY, USA, 428-451.

[2] Ganesh K, Saurabh Kalikar, and Rupesh Nasre. 2018. Multi-Granularity Locking
in Hierarchies with Synergistic Hierarchical and Fine-Grained Locks. In EuroPar
2018. ACM, New York, NY, USA.

[3] Saurabh Kalikar and Rupesh Nasre. 2016. DomLock: A New Multi-granularity
Locking Technique for Hierarchies. In PPoPP 2016. ACM, New York, NY, USA.

[4] Saurabh Kalikar and Rupesh Nasre. 2018. NumLock: Towards Optimal Multi-
Granularity Locking in Hierarchies. In ICPP 2018. ACM, New York, NY, USA.

	1 Hierarchies and Hierarchical Locking
	2 Interval based locking
	3 Special cases of hierarchical locks
	4 Experimentation
	References

