
Push-Pull on Graphs is Column- and Row-based SpMV Plus Masks
Carl Yang1,2, Aydın Buluç2,3 and John D. Owens1

1 Department of Electrical and Computer Engineering, UC Davis
2 Computational Research Division, LBNL

3 Department of Electrical Engineering and Computer Sciences, UC Berkeley

Objectives

• Investigate the generalizability of
direction-optimized BFS.

• Investigate how direction-optimized BFS can
be expressed using linear algebra.

Introduction

Push-pull, also known as direction-optimized
breadth-first-search (DOBFS), is a key optimization
for making breadth-first-search (BFS) run efficiently.
Linear algebra-based frameworks have advantages in
conciseness, performance and portability. However,
there is no work in literature describing how to im-
plement it within a linear algebra-based framework.
Our work shows that DOBFS fits well within the
linear algebra-based framework.

Traversal is Matvec

Figure: Matrix-graph duality. The adjacency matrix A is the
dual of graph G. The matvec is the dual of the BFS graph
traversal. Figure is based on Kepner and Gilbert’s book.

Complexity Results

Operation Expected Cost
Row- unmasked O(dM)
based masked O(d nnz(m))
Column- unmasked O(d nnz(f) log nnz(f))
based masked O(d nnz(f) log nnz(f))

Table: Four sparse matvec variants and their associated cost,
measured in terms of number of expected memory accesses
into the sparse matrix A required.

Direction-optimized BFS

(a) Graphical representation. (b) Linear algebra.

(c) Pull iteration. (d) Push iteration.

Figure: Simple example showing BFS traversal from the 3
nodes marked orange. There is a one-to-one correspondence
between the graphical representation of both traversal
strategies and their respective matvec equivalents on the figure
to the right.

Optimizations

(a) Row-based matvec cannot use
input or output sparsity.

(b) Column-based
matvec can use input
sparsity.

(c) Row-based masked matvec can
use output sparsity.

(d) Column-based
masked matvec can use
input sparsity.

(e) Row-based masked matvec can
use output sparsity and early-exit.

(f) Column-based
masked matvec cannot
early-exit.

Figure: The three optimizations known as
“direction-optimized” BFS.

Experimental Results

1

10

100

1000

soc-ork soc-lj h09 i04 kron rmat22 rmat23 rmat24 rgg roadnet road_usaSl
ow

do
w
n	
co
m
pa
re
d	
to
	G
un
ro
ck

Dataset

SuiteSparse CuSha Baseline Ligra This	Work

Figure: Comparison of our work to other graph libraries (SuiteSparse, CuSha, a baseline push-based BFS, Ligra, and Gunrock)
implemented on 1× Intel Xeon 4-core E5-2637 v2 CPU and 1× NVIDIA Tesla K40c GPU.

Conclusion

In this paper we demonstrate that push-pull cor-
responds to the concept of column- and row-based
masked matvec. A possible future research direction
would be to extend masking to other applications
such as triangle counting and enumeration, adaptive
PageRank, batched betweenness centrality, maximal
independent set, and convolutional neural networks.

Direction-optimized Runtime

1 2 3 4 5 6
Iteration

0.0

0.5

1.0

1.5

Fr
on

tie
r/U

nv
isi

te
d 

no
de

s
 c

ou
nt

 (M
illi

on
s)

Row-based (mask)
Column-based (mask)

(a) Frontier count and unvisited node count.

1 2 3 4 5 6
Iteration

0

100

200

300

400

Ru
nt

im
e 

(m
s)

Row-based (mask)
Column-based (mask)

(b) Push and pull runtime.
Figure: Breakdown of edge types in frontier during BFS
traversal of Kronecker scale-21 graph (2M vertices, 182M
edges).

Contact Information

•Web: http://www.ece.ucdavis.edu/∼ctcyang/
•Email: ctcyang@ucdavis.edu
•Phone: +1 (916) 802-8178

http://www.ece.ucdavis.edu/~ctcyang/
mailto:ctcyang@ucdavis.edu

