
OpenMP 4.5 Implementations:
Evaluation & Verification Of Offloading Features

UDEL: Jose Monsalve (josem@udel.edu) , Sunita Chandrasekaran (schandra@udel.edu)
ORNL: Swaroop Pophale (pophaless@ornl.gov), Oscar Hernandez (oscar@ornl.gov), David Berndholt (bernholdtde@ornl.gov)

ANL: Hal Finkel (hfinkel@anl.gov)

On the quest of High Performance Computing systems capable of achieving high
parallelism on scientific applications, a trend of adding acceleration devices with
specialized hardware architectures can be observed. An evidence of this are the 102
supercomputers of the latest top 500 list that use an accelerator or co-processor of
which 86 use GPGPUs. Furthermore, new programming languages and frameworks
have been created to support and program accelerators. While each vendor may offer
its own programming solution, traditional programming frameworks such as OpenMP
works towards solving this issue by adapting its standard starting at version 4.0 to
support target devices. Although currently it is not the only option, all solutions share
a common objective of increasing code portability across vendors as well as multiple
architectural generations.
However, maturity and correctness of these solution needs to be tested. In particular
for OpenMP, there is a breach between the moment the standard is released and
when compilers and vendors implement support for such standard. Hence, there is a
need of a methodology to assess the quality of an implementation of the OpenMP
standard, as well as evaluate system compliance during system deployments. Such
methodology should reveal possible bugs or conflicts on the interpretation of the
standard, as well as provide metrics to characterize the quality level of many
implementation.
To this end, this work presents a tests suite for OpenMP 4.5 that is currently under
development. This suite follows a well thought methodology that was stablished in
advanced to provide a common and steady ground, allowing vendors, systems
developers and programmers to asses the level of readiness and maturity of an
OpenMP 4.5 implementation for a particular vendor.

Abstract Methodology
Analyze OpenMP

4.5 offload directive 
OR ECP Application

Formulate test
Discuss validity 
and adherence 
to specification

NO

YES

Test with available 
implementations

Test 
passes?

Open for 
community review

NO

YES

File Bug report 
with vendor 

Add to the 
V&V suite

Test 
accepted?

YESSpecification 
issue

Implementation 
BugBring to OpenMP 

Specs discussion

NO

Why?

Test 
valid?

There are three possible positive outcomes of our methodology to build tests. Either a test passes through
all the checks and makes it to the validation suite, or it uncovers a bug in the vendor implementation of
the OpenMP 4.5 standard, or it highlights a contentious concept or text that is easy to misinterpret which
needs to be brought to the attention of the OpenMP community and specification developers. All tests are
written agnostic to where they are executed (host vs. target). After a test executes the output indicates if
the test passed or failed and where it was executed (host or target).

OpenMP offloading Simple Test Cases

Host Devices

Host centric execution of code: Offloading directives provides the compiler with hints
to create device executable code, as well as inline all the necessary calls for device
initialization, code execution and data movement between host and device.
OpenMP frees the programmer from bookkeeping data allocation and movement, as
well as separate compilation of code for host and device.
OpenMP 4.5 in particular provides more control to the programmer to handle data
movement between host and device.

#pragma omp target map(tofrom: myVar) if(myCondition) device(2) depend(out: a)
{

myVar ++;
}

Device code generation

Data movement

Conditional exec on device

device selection

Offloading Multiple devices:
Distribute each row of a matrix to one of the available
devices(lines 5-14). Each iteration performs data
movement and computation in a different device. Target
data region maps a portion of the matrix to each
device(line 6). Computation is performed on the target
region (line 8).

Mapping static attribute of a class:
The unique value of the stativ VAR is mapped inside the
method of a class with a target region and the map
clause (lines 6-9). An OpenMP 4.5 capable compiler
should capture the static variable (VAR) and map it to
and from the device.

Task dependencies:
Task graph made out of host and target
tasks with in, out and inout
dependencies. Asynchronous behavior
specified using the nowait clause. Data
mapping tasks are separated from
computation tasks. Signals between
host and target in both directions

Complex Test Cases Current Snapshot
Our intention is to develop a test suite for the entire OpenMP 4.5 specification.
We classify our tests by directives and clauses. The aforementioned
methodology was used. Some of them have resulted in multiple bug reports.
Following is a snapshot of the current suite
• Tested using 4 different compilers: Clang, IBM XL, GCC and Cray CCE.
• Target platforms:

• Titan Cray XK7: AMD Opteron x64 + Nvidia K20X
• SummitDev: IBM Power8 + NVIDIA TESLA P100

Deep Copy of Classes:
This code came from analyzing a full scale ECP
application. It uses the declare target directive (line 4 to
36) to ensures that procedures and global variables can
be executed and data can be accessed on the device.
When the C++ methods are encountered, device-
specific versions of the routines are created that can be
called from a target region.
Deep copy is performed through the use of target enter
data (lines 43 and 44) by first mapping the class and
then the individual class members. Computation is
performed on the device (line 46). After computation is
over, the data is copy back to the host (line 52).

Mapping Linked list to device:
The map_ll function (line 5) uses target enter data
directive to first map the head of the linked list, and
then map the pointer to the next link using array
dereferencing syntax. The unmap_ll (line 19) function
explicitly copies the data using map-type from with
target exit data map.

Computer and Information Sciences

Visit our website

Target Dependencies

YES


