
SOSflow:	A	Scalable	Observation	System	
for	Introspection	and	In	Situ	Analytics	

	
Logs,	Summaries,	
Visualizations,	
Dashboards,	
Configuration	Files	

	
Applications,	
ADIOS,	MPI,	
TAU,	Caliper,	RAJA	
etc.	

Clients	

SOS	

Output	Steering	
Logic	

Analysis	

v  Distributed	components	with	data	flow	
v  Complex	interactions	with	dynamic	

behavior	
v  Variability	is	inherent	in	machine	

components	
v  Shared	resource	utilization	at	runtime	is	

a	significant	factor	in	performance	
v  Offline	measurements	provide	limited	

insights	
v  An	in	situ	(online)	runtime	is	needed	for	

scalable	measurement,	analysis,	and	
application	steering	

Design	and	API	

Compute	Time	

DATA	

VIZ	

A:	Parallel	 B:	Serial	

C2:	Serial	

C1:	Irregular	

C1	+	C2	:	Parallel	

=	Unit	of	Work	

=	Result	

SOSflow	daemons	provide	an	integrated	context	for	information	from	all	
components	of	a	distributed	workflow,	for	the	entire	duration	of	a	job.	

v  Off-Node	Aggregators	
-  Can	be	run	on	dedicated	nodes	
-  SQL	store	contains	all	the	data	captured	

by	the	listeners	
-  Can	launch	many	aggregators	and	run	

queries	on	them	in	parallel	
-  Send	feedback/control	data	to	listeners	
-  Online	aggregation	can	be	disabled	or	

deferred	to	offline	processing	

v  In	Situ	Listeners	
-  Runs	entirely	in	user-space	
-  Minimally	invasive	
-  In-memory	SQL	database	per	daemon	
-  Efficient	push/pull	data	flow	
-  Provides	feedback/control	mechanism	

for	analysis	and	steering	scripts	
-  Integration	with	performance	tools	
-  APIs	for	C/C++	and	Python	

Efficiently	observing	and	
interacting	with	complex	
scientific	workflows	at	scale	
presents	unique	challenges.	
	

SOSflow	helps	meet	them.	

“Hello,	SOS”	w/C:	 Online	query	w/Python:	

Download	SOS:	
github.com/cdwdirect/sos_flow.git	

v  SOSflow	written	in	C99	for	high-
performance	w/small	footprint	

v  Several	communication	backends	
are	supported,	including	EVPath,	
MPI,	sockets,	and	ZeroMQ	

v  Asynchronous	design	focuses	on	
minimizing	overhead	and	time	
spent	in	API	calls	within	client	
applications	

v  Flexible,	programmable	interface	
v  Provides	a	distributed	key/value	

store	with	full	SQL	query	support	
v  Offers	a	low-latency	value	cache	

with	adjustable	depth	
v  Highly-configurable	daemons	
v  Integrated	support	for	UID/GID	

authentication	(Munge)	

SOSflow	functions	as	a	hub	for	collecting,	aggregating,	and	acting	
on	a	variety	of	information	at	runtime	
	
SOSflow’s	in	situ	(online)	services	work	together	to	provide	global	
views	and	online	data	analytics	within	an	HPC	environment	

The	research	report	was	supported	by	a	grant	(DE-SC0012381)	from	the	
Department	of	Energy,	Scientific	Data	Management,	Analytics,	and	
Visualization	(SDMAV),	for	“Performance	Understanding	and	Analysis	for	
Exascale	Data	Management	Workflows.”		
Part	of	this	work	was	performed	under	the	auspices	of	the	U.S.	Department	
of	Energy	by	Lawrence	Livermore	National	Laboratory	under	Contract	DE-
AC52-07NA27344	(LLNL-POST-751722).	

Results:	Performance	Understanding	

v 512	ranks	on	32	nodes	on	QUARTZ	and	CATALYST	
v SOSflow	filter	added	to	ALPINE	Ascent	pipeline	
v KRIPKE:	3D	deterministic	neutron	transport	proxy	
application	that	implements	a	distributed-memory	
parallel	sweep	solver	over	a	rectilinear	mesh.		

v LULESH:	3D	Lagrangian	shock	hydrodynamics	proxy	
application	that	models	Sedov	blast	test	problem	
over	a	curvilinear	mesh.		

v  4,096	ranks	of	XGC	on	TITAN	
v  Data	collected	and	aggregated	online	

from	TAU	measuring	ADIOS,	MPI,	and	
user	code	

v  Python	script	queried	SOSflow	during	
the	run	and	assembled	VTK	files	with	
performance	metrics	projected	over	
server	rack	and	node	coordinates	

Process	Index	projected	over	PMI	Coords	 Bytes	Read	by	ADIOS	

MPI,	USER	Time	by	Process	Index,	
Distributed	by	Time	

Cumulative	USER	Time	 Bytes	Sent	using	MPI	Collectives	

Loops	 Maximum	
Backlog	

Cumulative	USER	Time	(CPU	ticks)	

Cycle	20:	341	to	543	 Cycle	160:	3,109	to	3,608	 Cycle	300:	6,286	to	7,138	

Cycle	440:	9,279	to	10,634	

SYSTEM	Time	

USER	Time	

IO	(Bytes	Read)	

v No	ad	hoc	instrumentation	needed	
v Updated	geometry	is	automatically	
captured	during	the	run	to	observe	metrics	
projected	over	a	changing	mesh	

v Anything	published	to	SOSflow	can	be	
projected	into	these	online	views	

v SOS	runtime	overhead	within	system	noise	
v Enable/disable	without	recompilation	

v  SOSflow	integrated	performance	
measurements	from	all	parts	of	the	
workflow	

v  Dynamic	visualizations	were	rendered	
and	displayed	live	during	the	run	

v  Any	TAU-collected	performance	metrics	
could	be	selected	for	display	

Future	Work	

Apollo	Performance	Portability	
-  Next	Generation	of	LLNL’s	Apollo	Project	
-  Intelligent	RAJA	policy	configuration	
-  Caliper	and	SOSflow	collect	metrics	at	runtime	and	
facilitate	distributed	analysis	and	steering	

-  Online	machine	learning	adapts	to	changes	over	time	
i.  Physics	changes	over	time	in	a	run	
ii.  Code	changes	w/new	commits	and	merges	
iii.  System	utilization	changes	during	jobs		

Todd	Gamblin	
tgamblin@llnl.gov	

Alfredo	Gimenez	
gimenez1@llnl.gov	

Matt	Larsen	
larsen30@llnl.gov	

Kevin	Huck	
khuck@cs.uoregon.edu	

David	Boehme	
boehme3@llnl.gov	

David	Poliakoff	
poliakoff1@llnl.gov	

David	Beckingsale	
david@llnl.gov	

Author	

Chad	Wood	is	a	fourth-year	Computer	&	
Information	Science	PhD	student	at	the	
University	of	Oregon.	His	research	focus	
is	on	monitoring,	introspection,	
feedback,	and	control	for	HPC	systems,	
emphasizing	online	in	situ	operations	
and	scalability.		

Chad	Wood	
cdw@cs.uoregon.edu	
ix.cs.uoregon.edu/~cdw	

SOS	Daemons	

Collaborators	

SOS	Model	


