
RESEARCH POSTER PRESENTATION DESIGN © 2015

www.PosterPresentations.com

Breadth First Search (BFS) is a key graph searching algorithm for
many graph computing applications. However, memory divergence
harms GPU’s efficiency dramatically due to the irregular memory
access pattern of BFS. Memory prefetching can fetch useful data
into on-chip memory in advance, but current prefetchers cannot
deal with data-dependent memory accesses. In this paper, we
propose DSAP, a data structure-aware prefetcher on GPU that
generates prefetching requests based on the data-dependent
relationship between graph data structures and the memory access
pattern of BFS. Also, we introduce an adaptive prefetching depth
management to make DSAP more efficient according to the limited
on-chip memory storage. We evaluate six datasets from three
different kinds of applications and DSAP can achieve geometrical
mean speedups of 1.28x, up to 1.48x, compared to the GPU
without using prefetching.

ABSTRACT

Introduction 

A. Prefetching Operations
According to the traditional BFS algorithm, most of memory
accesses are data-dependent. For example, accesses to vertex list is
dependent on the vertex id fetched from the work list. However,
the data dependent relationship and the memory access pattern are
fixed and sequential, therefore prefetchers can easily copy its
memory access pattern and generate prefetching requests
according its data dependent relationships, with some explicit
graph data structure information. Therefore, prefetchers need to
monitor the memory accesses to decide which data to prefetch
next. Tab. 1 shows how DSAP prefetches all the data of one
iteration by monitoring memory accesses to graph data structures.

Data Structure-Aware Prefetching

A. Methodology
We implement the GPU with the prefetching unit on GPGPUSim simulator 
[4]. And the parameters of the simulator are based on GTX-480, listed in 
Tab.2. The datasets we test are from the SNAP datasets [3] and their features 
are listed in Tab. 3.

Evaluation

Figure 2 Speedups of DSAP with different UTs for six datasets

REFERENCES
1. Lee, J., Lakshminarayana, N. B., Kim, H., and Vuduc, R. 2010. 

Many-thread aware prefetching mechanisms for GPGPU 
applications. In Microarchitecture (MICRO), 2010 43rd Annual 
IEEE/ACM International Symposium on (pp. 213-224). IEEE.

2. Oh, Y., Kim, K., Yoon, M. K., Park, J. H., Park, Y., Ro, W. W., 
and Annavaram, M. 2016. APRES: improving cache efficiency 
by exploiting load characteristics on GPUs. ACM SIGARCH 
Computer Architecture News, 44(3), 191-203.

3. https://snap.stanford.edu/data/index.html
4. Bakhoda, A., Yuan, G. L., Fung, W. W., Wong, H., and Aamodt, 

T. M. 2009. Analyzing CUDA workloads using a detailed GPU 
simulator. In Performance Analysis of Systems and Software, 
2009. ISPASS 2009. IEEE International Symposium on (pp. 
163-174). IEEE.

Acknowledgements
This work was supported by the NSF of China under Grants
61433019, 61472435, 61572058, 61672526, 61202129,
U14352217, YESS under Grant 20150090 and Research Project of
NUDT ZK17-03-06.

Breadth First Search (BFS) has been used in many graph
computing algorithms, such as Page Rank, Single Source Shortest
Path (SSSP) and other big data applications. As the input graph is
increasingly larger, BFS becomes a performance bottleneck for
most applications. The irregular memory access pattern of BFS is
the primary reason that impacts its performance on GPU. When
GPU processes these irregular memory accesses, the latency to
fetch the entire data of a load instruction will be much longer than
that of regular memory accesses. Even though GPU achieves
latency hiding through massive parallelism, it still spends many
stall cycles to wait for data.

To address the inefficiency of irregular memory accesses on GPU,
prefetching is one of the promising technologies. Most of current
prefetchers, such as stream prefetchers, stride prefetchers and GHO
prefetchers, can effectively reduce memory latency for regular
access patterns. MT-prefetching [1] proposed an inter-thread
prefetching mechanism with hardware prefetchers training to
reduce the negative effect of prefetching on GPU. APRES [2]
combines warp scheduling and prefetching to improve cache
efficiency. Both of the two recent proposed GPU prefetching
mechanism are based on stride or stream prefetchers, which are not
able to deal with indirect memory accesses of BFS.

CSR-format graph data structure is a kind of compressed graph
data structures widely used to store large graphs. It uses two data
arrays (vertex list and edge list) to describe the relationships of the
vertex and edges in a graph. In this paper, we propose a Data
Structure-Aware Prefetching (DSAP) that generates prefetching
requests based on the data-dependent relationship of CSR-format
graph data structures and the memory access pattern of BFS.
DSAP can prefetch data-dependent data accurately with the
explicit graph data structure information and improve the cache
efficiency by the adaptive prefetching depth management. For six
datasets from three different applications, DSAP achieves a
geometric mean speedup of 1.28x, and up to 1.48x, compared to
the GPU without prefetchers.

†National University of Defense Technology, Changsha, Hunan, China
‡Space Engneering University, Beijing, China

{huiguo, libohuang, yashuailv, yuqi13, masheng, zywang} @nudt.edu.cn

Hui Guo†, Libo Huang†, Yashuai Lü‡, Qi Yu†, Sheng Ma† and Zhiying Wang†

DSAP: Data Structure-Aware Prefetching for Breadth First Search on GPU

B. Adaptive Prefetching Depth
According to the traditional BFS algorithm, most of memory
accesses are data-dependent. For example, accesses to vertex list is
dependent on the vertex id fetched from the work list. However,
the data dependent relationship and the memory access pattern are
fixed and sequential, therefore prefetchers can easily copy its
memory access pattern and generate prefetching requests
according its data dependent relationships, with some explicit
graph data structure information. Therefore, prefetchers need to
monitor the memory accesses to decide which data to prefetch
next. Tab. 1 shows how DSAP prefetches all the data of one
iteration by monitoring memory accesses to graph data structures.

C. Hardware Design
For each cuda core, a DSAP prefetching unit is designed to sit
aside L1 cache. Each prefetching unit has four main components
(Fig. 1). A set of registers store the address boundaries of the graph
data structures. A table records the runtime information of each
warp. These runtime information includes the indices of graph data
structures being accessed by the warp. DSAP uses this runtime
information to calculate the addresses of data to be prefetched. A
prefetching request queue stores the memory access requests
generated by the prefetching unit. A control unit takes
responsibilities for managing the adaptive prefetching depth and
controlling prefetching.

Monitored Memory Accesses Prefetching Actions
Load vid = work_list[i] Prefetching work_list[i+1]
Prefetched
nvid = work_list[i+1]

Prefetching vertex_list [nvid] 
and vertex_list [nvid+1]

Prefetched
eid = vertex_list[nvid] and 
neid = vertex_list[nvid+1]

Prefetching edge_list[eid:neid]

Prefetched edge_list[eid:neid] Prefetching 
visited_list[edge_list[eid:neid]]

Table 1 Prefetching Actions Based on Monitored Memory 
Accesses

Figure 1 Hardware Components of DSAP Prefetching Unit

Name of Dataset Nodes Edges 

roadNet-CA 1,965,206 27,766,607

USA-Road 1,070,376 2,712,798

roadNet-TX 1,379,917 1,921,660

Oregon-2 11,461 32,731

Cit-HepPh 34,546 421,578

roadNet-PA 188,092 1,541,898

1

1.1

1.2

1.3

1.4

1.5

1.6

roadNet-CA USA-Road roadNet-TX Oregon-2 Cit-HepPh roadNet-PA GeoMean

Sp
ee

du
ps

 o
ve

r 
G

PU
 w

/o
 p

re
fe

tc
he

r

Datasets

UT=0 UT=0.5 UT=0.75 UT=0.85 UT=0.9

B. Adaptive Prefetching Depth
Fig. 2 shows the speedups of BFS running on the GPU with the
prefetchers using different utilization thresholds. “UT” means
Utilization Threshold, which is used by the adaptive prefetching
depth management. When UT equals to 0, the adaptive prefetching
depth management is inactive. In general, we test six datasets from
three different applications, which are road networks, autonomous
systems graphs and citation networks and DSAP achieves a
geometric mean speedup of 1.28x, compared to the performance of
the GPU without prefetchers. For the USA-Road dataset, DSAP
achieves the highest speedup of 1.48x, while for the Oregon-2
dataset, it only has a speedup of 1.16x. The size of the graph is a
key factor. The size of Oregon-2 is small enough to be cached in
L2 cache, therefore DSAP only benefits the cycles of transferring
data from L2 to L1. When UT equals to 0.75, DSAP achieves the
best performance, this demonstrates the adaptive prefetching depth
management can make a good balance between prefetching data
and on-chip memory storage.

Table 3 The Features of Tested Datasets

Table 2 The Parameters of GPGPUSim Simulator

Parameter Value
Number of SMs 15
Threads per SM 1536
Threads per Warp 32
Warp Scheduling Policy GTO
L1 Cache Size 48KB


