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ABSTRACT
High Performance Computing (HPC) systems are facing se-
vere limitations in both power and memory bandwidth/-
capacity. Both limitations have been addressed individu-
ally: to exploit performance under a strict power constraint,
power shifting, which allocates more power budget on the
bottleneck component, is a promising approach; for mem-
ory bandwidth/capacity, the industry is gradually shifting
towards hybrid main memory designs that comprise multi-
ple technologies (e.g., DRAM and Non-Volatile RAM). How-
ever, few works look at the combination of both trends.

We propose a power management concept called footprint-
aware power shifting, which explicitly targets hybrid main
memory systems. The idea is based on the following obser-
vation: in spite of the system software’s efforts to optimize
the data allocations on such a system, the effective memory
bandwidth decreases considerably when we scale the prob-
lem size of applications. As a result, the performance bottle-
neck changes among components depending on the footprint
size, which then also changes the optimal power budget set-
tings. We demonstrate the phenomenon and quantitatively
show the impact of our power management approach.

1. INTRODUCTION
Power consumption is becoming one of the major design

constraints when building supercomputers or High Perfor-
mance Computing (HPC) systems. Therefore, to gain higher
performance on such power-constrained systems, it is neces-
sary to develop sophisticated power management schemes.
The most common approaches for this are power capping
(setting a power constraint to each job/node/component)
and power shifting (shifting power among components de-
pending on their needs) [4].

At the same time, we continue to face limited memory
bandwidths and capacities in HPC systems. On one hand,
to improve bandwidth, many vendors focus on main mem-
ories with emerging 3D stacked DRAM technologies. How-
ever, these memory systems have limited capacity-scalability
compared to conventional DDR-based DRAM [3]. On the
other hand, using emerging scalable NVRAM (Non-Volatile
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Figure 1: Roofline plots [5] measured on our hybrid memory
based system.

#pragma omp p a r a l l e l for simd
for ( i = 0 ; i < N; i ++) {

A[ i ] = A[ i ] ∗ B[ i ] . . . ∗ B[ i ] ;
}

Figure 2: Tested streaming code (footprint size ∝ N, arithmetic
intensity ∝ the number of * B[i])

RAM, e.g., Intel 3D Xpoint memory [2]) is attractive in
terms of capacity, but they are much slower than conven-
tional DRAM. As consequence, the industry has been shift-
ing toward hybrid memory designs: architecting main mem-
ories with multiple different technologies (e.g., 3D stacked
DRAM + DDR-based DRAM [3] or DRAM + NVRAM [2]),
which are usually heterogeneous in bandwidth and capacity.

2. BASELINES
We used a hybrid main memory based system and per-

formed a preliminary evaluation (Figure 1). The system
configuration is summarized in Table 1. The main memory
consists of DDR4 DRAM and PCIe attached NVRAM (In-
tel 3D Xpoint Optane [2]). By using Intel Memory Drive
Technology (IMDT) [2], we can use the NVRAM as a part
of the main memory.

On this system, we executed a synthetic streaming code
shown in Figure 2 while changing the footprint size (prob-
lem size) and the arithmetic intensity. Figure 1 describes
the results. The shapes of the curves can be well-explained
by the roofline model [5] — that is, for smaller arithmetic
intensity, the performance is capped by the memory system
bandwidth (the slope lines), but for higher arithmetic in-
tensity, it is limited by the CPU throughput (the horizontal
lines). Although the system software attempts to optimize
the data mapping on the hybrid main memory, the effec-
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Figure 3: Power shifting result. The X-axis represents Pmem, and the Y-axis shows the performance which is normalized to that without
power capping for each footprint size. The larger Pmem goes, the smaller Pcpu becomes as we set the constraint: Ptotal = Ppcu +Pmem.

tive bandwidth decreases as the footprint size scales. As
a result, the slope line in Figure 1 moves toward the down-
side. Because of this effect, the performance bottleneck shifts
from the CPU to the memory system even for CPU intensive
workloads when we increase the footprint size.

3. APPROACH
Driven by the observation, we propose footprint-aware

power shifting that shifts power among components depend-
ing on the footprint size. The concept can be formulated as
follows.

max Perf(S, Pcpu, Pmem)

s.t. Pcpu + Pmem ≤ Ptotal

The objective is to maximize performance (Perf), which is
a function of the footprint size (S) and the power budgets
of the CPU (Pcpu) / memory system (Pmem). The second
equation describes the constraint given by the total power
budget of the node (Ptotal). We attempt to optimize Pcpu

and Pmem when the other two parameters are given. To
maximize performance, we must choose the best combination
of {Pcpu, Pmem} by identifying the bottleneck component,
which highly depends on the footprint size S.

4. EVALUATION
In our evaluation, we changed the combination of {Pcpu,

Pmem} under a given power constraint (Ptotal) for several
workloads. To do so, we set various power cap values to
each component through RAPL (Running Average Power
Limit) [1]. Note that the power budget of the NVRAM
was not considered, which was regarded as 0 in this evalua-
tion. We are going to cover this in the future work. As for
the workloads, we chose FFT from the HPCC benchmarks,
Lulesh from the CORAL benchmark, and the synthetic code
(Streaming) shown in Figure 2.

Table 1: System configuration

CPU Package
Xeon Gold 6154 Processor (Skylake),

18 cores, 3.0GHz, TDP 200W x2 sockets

Memory

System

DRAM: DDR4-2666 x12 DIMMs, 12ch, 192GiB

NVRAM: Intel Optane SSD P4800X, 375GB,

2.4GB/s(read), 2.0GB/s(write) x2 cards

Data management: IMDT [2]
OS Cent OS 7.4

Compiler
Intel C++/Fortran Compiler 17.0.4,

Options: -O3 -qopenmp

Figure 3 shows the results. As shown in the graphs, the
optimal combination of {Pcpu, Pmem} changes as the data
size scales for all of those workloads. For Streaming (Flop-
s/Bytes: 10.7), FFT and Lulesh: shifting power from the
CPU to the DRAM memory improves performance when
we scale the problem size, as the CPU becomes less critical
due to the bandwidth degradation (Figure 1).

An exception is the code Streaming (Flops/Bytes: 0.167),
which is a memory intensive workload. Consequently, the
DRAM cannot convert the allocated power into performance
effectively due to the frequent accesses to the NVRAM when
the footprint size is larger than the DRAM capacity. In
contrast to this, the DRAM can utilize larger power to im-
prove performance at 128GiB as the memory system is still
the bottleneck and the NVRAM is rarely accessed. There-
fore, we need to consider (1) the bottleneck shifting between
CPU and memory for CPU intensive workloads and (2) the
DRAM/NVRAM access rate especially for memory inten-
sive workloads when allocating power.

5. CONCLUSION AND FUTURE WORK
In this article, we proposed a power management con-

cept called footprint-aware power shifting. According to our
evaluation, the approach is promising to improve the perfor-
mance of power-constrained hybrid memory based systems.
In the future work, we are going to develop a software frame-
work, a performance-power model, and a power allocation
algorithm to realize our proposal.
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