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ABSTRACT
Distributed computing technologies have been used to facil-
itate machine learning applications, so that high-end hard-
ware resources, such as clusters, GPUs, etc., can be leveraged
to achieve high performance. In this paper, take a different
approach to make deep learning framework more accessible.
We present WebNN, a web-based distributed framework for
deep learning. WebNN enables users to configure, distribute,
and train neural networks asynchronously over the Internet,
utilizing peer-owned resources with increased flexibility. Ex-
periments have been carried out to evaluate WebNN, and
the results show that WebNN is a effective solution for dis-
tributed training of models using pre-labeled batches, or
client-provided data.
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1 INTRODUCTION
There are a myriad of tools and frameworks available for
training neural networks, among which Google’s Tensor-
Flow [1] has rapidly become the most well known and widely
used framework. Most recently, Google added TensorFlow.js
to its framework–bringing machine learning to the browser.
TensorFlow.js is inspired by TensorFlow’s Keras in its API,
and it leverages WebGL to accelerate execution of neural
networks on the client’s GPU.

While TensorFlow.js does run in the browser, it’s a client-
side technology that requires additional services on the back-
end to distribute trainedmodels to clients, or to train a central
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model that all clients can execute, train, and share. To this
end, we have created a system called WebNN to facilitate
distributing and training models in the web browser. WebNN
also allows users to deploy their models in real web applica-
tions, and have their clients train the model with their own
private data, eliminating the need for creating large, pre-
labeled training data. WebNN is open sources on Github1.

2 WEBNN ARCHITECTURE
To make it easy to interface with the front-end, we employ
JavaScript (ES6+) through NodeJS. WebNN Server builds
off of NodeJS to serve the model over http. Also supported
by NodeJS is a small tool "wnn.js" which provides some
convenient command-line controls for WebNN. WebNN can
be deployed as a standalone server, or applied to an existing
application as a service. Figure 1 shows the architecture of
the WebNN framework.

Figure 1: WebNN Architecture

Users create their models in a JSON format, configure it
training and validation properties, and create a JavaScript
module which the server will use to get training and valida-
tion data. The server will hand the model off to clients for
training, along with a set of weights, and training data upon
request. Clients can send back their modified weights to the
server, and receive a new set of weights (from another client)
to merge into their own.
A challenge in WebNN is how to merge the client gen-

erated weights in an effective way. Distributed TensorFlow
handles these so-called stale weights by simply dropping
them, and not merging them at all. This is an acceptable
1WebNN is open sourced at https://github.com/aarongoin/WebNN
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strategy when training over a central dataset, but this is un-
acceptable when clients are potentially training with their
own data that a central model cannot redistribute and train
on. Inspared by [3] to we take a different approach to scale
stale weights based on how stale they are.
To enable web-scale applications, we offload merging to

our clients, and the server simply facilitates swappingweights
between peers. The server still retains a copy of all outstand-
ing weights (weights that have been sent to a client who has
not yet updated the server), so weights are never in jeop-
ardy of being lost. And the server can be made to merge
all weights together before sending them to be validated if
needed. To this end, we implemented three different methods
a client could use to merge the incoming weights with their
own:

• Averagemerge:weights are simply averaged together
regardless of potential staleness;

• Weighted merge: every time a client trains, its time
step variable is incremented. This step variable is al-
ways kept with theweights, andweightedmerge scales
all weights by their time step to favor less stale weights.

• Mimicmerge: uses the same information as theweighted
merge, but handles it differently. Any average is going
to be bounded between the values themselves. Rather
than averaging the weights, the mimic merge deter-
mines which set of weights is less stale, determines
the difference between those weights and the other
set, and then moves the current weights in the same
direction. To avoid erratic oscillations, the weight ad-
justment is scaled according to how far apart the two
weights are.

3 EXPERIMENTAL RESULTS
We have evaluated our merge functions using MNIST data-
set2. Specifically, we keep training on the model until the 5-
second running average of the validation accuracy is greater
than or equal to 98%. We set our model to validate once every
second, set our mini-batch size to 64 samples, and set our
learning rate to 0.2. To compare between merge functions,
we trained our model with each merge function and 4 clients.
We did this 4 times for each merge function. Both the server
and the clients are run on iMacs with 2.5GHz i5 CPU, 8GB
RAM and an AMD Radeon 6750M GPU.
In addition to the three merge functions in WebNN, in

our experiments we added Copy merge as a baseline. This
is a method which is effectively equivalent to training with
a single client and is used as a benchmark. This merging
method has the client pick whichever set is most accurate,
and discards the other. When used in an environment where

2Dataset is availalbe at https://js.tensorflow.org/tutorials/mnist.html

Figure 2: Comparison of Merge Functions

clients provide their own data: clients using copy merge
would discard weights and lose valuable trained weights.

Figure 2 shows the loss and accuracy over time for each
of the four merge functions. The weighted merge results in
more accurate training in less time than the naive merge,
demonstrating the potentials of the peer-based weight merge
mechanism for distributed training.

4 CONCLUSION
WebNN is a web-based framework for distributing and train-
ing a centralized neural network in the browser. It enables
users to easily deploy and train a neural network over a dis-
tributed system, therefore utilize peer-owned resources. Our
experimental results show that a peer-based weight merge
system works best with a weighted average favoring weights
with more training iterations behind them. The peer-based
merging we implemented can be improved to promote less
variance between clients [2], which can potentially further
improve the training performance.
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