
UTILIZING RANDOM PROFILING FOR SYSTEM MODELING AND DYNAMIC CONFIGURATION

Jason Hiebel Laura E. Brown Zhenlin Wang

Department of Computer Science, Michigan Technological University

Motivation

Dynamically tuning or reconfiguring operating system and
architectural resources at runtime can improve perfor-
mance by adapting system resources to the current work-
load. However, constructing effective policies for dynamic
configuration is difficult due to limited feedback. We are
limited to capturing workload and performance character-
istics for only the current system configuration.

Goal: Use sequential decision processes with limited feed-
back for system performance modeling and dynamic sys-
tem configuration.

We consider three problems using sequential decision pro-
cesses as our model:

◮ system event selection,

◮ dynamic paging mode selection, and

◮ dynamic hardware prefetcher configuration,

and use random sampling to construct effective efficient
decision making policies.

References

[1] John Langford and Tong Zhang.

The epoch-greedy algorithm for contextual multi-armed bandits.

In Advances in Neural Information Processing Systems, 2007.

[2] Alina Beygelzimer and John Langford.

The Offset Tree for learning with partial labels.

In Proceedings of the 15th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, 2009.

[3] Nicolò Cesa-Bianchi, Shai Shalev-Shwartz, and Ohad Shamir.

Efficient learning with partially observed attributes.

Journal of Machine Learning Research, 2011.

[4] Jason Hiebel, Laura E. Brown, and Zhenlin Wang.

Constructing dynamic policies for paging mode selection.

In Proceedings of the 47th International Conference on Parallel

Processing, 2018.

[5] Wei Kuang, Laura E. Brown, and Zhenlin Wang.

Selective switching mechanism in virtual machines via support vector

machines and transfer learning.

Machine Learning, 2015.

Acknowledgements

This research is supported in part by the National Science Foundation under Grant

No. CSR1422342 and CSR1618384, the National Science Foundation of China

under Grant No. 61232008, 61472008, 61672053 and U1611461, Shenzhen Key

Research Project under Grant No. JCYJ20170412150946024, and the 863 Program

of China under Grant No. 2015AA015305. Any opinions, findings, and conclusions

or recommendations expressed in this material are those of the authors and do not

necessarily reflect the views of the sponsors.

System Event Selection

Selecting a descriptive set of events which are relevant to
describing workload behavior and system performance.

Challenges:

◮ The Performance Monitoring Unit (PMU) exposes
hundreds of events; but only a small number of event
counters (typically four or eight).

◮ Events can be ill-fitting to an application, and are
sometimes inconsistently or incorrectly implemented.

Method — Attribute Efficient Regression (AER) [3]:

AER selects a number of events to sample randomly,
with probability proportional to the estimated influence
of the event and produces a linear regression model.

�������� ����������� �����
���������� �������

T
L
B

F
P

M
I
S
P

p
e
rl
b
e
n
c
h

b
z
ip
2

g
c
c

m
c
f

g
o
b
m
k

h
m
m
e
r

s
je
n
g

lib
q
u
a
n
tu
m

h
2
6
4
re
f

o
m
n
e
tp
p

a
s
ta
r

x
a
la
n
c
b
m
k

b
w
a
v
e
s

g
a
m
e
s
s

m
ilc

z
e
u
s
m
p

g
ro
m
a
c
s

c
a
c
tu
s
A
D
M

le
s
lie
3
d

n
a
m
d

d
e
a
lI
I

s
o
p
le
x

p
o
v
ra
y

c
a
lc
u
lix

G
e
m
s
F
D
T
D

to
n
to
lb
m
w
rf

s
p
h
in
x
3

Benchmark

Figure 1: Importance ranking for selected event classes: TLB,
DTLB miss counts; FP, scalar floating point operation counts; MISP,
branch misprediction counts. Higher ranked events are depicted
darker.

Experimental Design:

◮ Individual AER models are constructed for each SPEC
CPU2006 benchmark.

Conclusions:

Rankings substantiated by domain knowledge:
◮ Memory-intensive benchmarks rank DTLB miss events

prominently, e.g., mcf cactusADM.
◮ Scalar floating point events readily identify the floating

point benchmarks.
◮ Graph, tree search benchmarks have highly ranked of

branch mispredictions, e.g., astar, gobmk, and sjeng.

Dynamic System Configuration

Dynamic Paging Mode Selection

Dynamically select paging mode, i.e., Shadow Paging (SP)
and Hardware-Assisted Paging (HAP), at runtime to im-
prove system performance.

Challenges:

◮ Performance is only measured for the currently selected
system configuration (limited feedback).

◮ System configuration control is typically low-level,
which limits online methods or complex models.

Method — Contextual Bandit [1]:

A model for sequential decision process with limited
feedback. At each iteration,

1. Observe contextual information representing the cur-
rent state of the world.

2. Select an action using contextual information and ex-
isting knowledge about the problem.

3. Receive reward dependent on both the contextual in-
formation and selected action.

Action selection policies can be constructed from logged
data collected using random action selection [2].

Our DSP-OFFSET [4] is constructed for the contextual
bandit using random profiling data.

Dynamic Hardware Prefetching

Dynamically enabling or disabling hardware prefetchers
according to workload memory and cache behavior to im-
prove performance.

Challenges:

◮ Configuration space is large, with 24 possible prefetcher
assignments per core on Intel architectures.

◮ Prefetchers can cause destructive shared-cache inter-
ference (cache pollution) and increased memory band-
width usage with little improvement to performance.

◮ Decisions should be made cooperatively across multiple
cores to consider co-tenancy resource contention and
cache interference.

Proposed Methods:

◮ Naively consider each hardware prefetcher in isolation
using the same framework as paging mode selection.

◮ Developing policies which incorporate the combinato-
rial structure of multiple hardware prefetchers.

◮ Comparing independent, per-core configuration poli-
cies versus a single, global configuration policy.

Experimental Design:

◮ Policy constructed using a single, random profiling ex-
ecution of each integer benchmark from the SPEC
CPU2006 benchmark suite.

◮ Evaluated on full SPEC CPU2006 benchmark suite.

Conclusions:

◮ Per-benchmark performance matches or beats perfor-
mance of the best static policy.

◮ DSP-OFFSET paging mode selection matches known
program behavior.

◮ DSP-OFFSET has equivalent performance to the
state-of-the-art ASP-SVM [5].

◮ DSP-OFFSET needs substantially less profiling

than ASP-SVM: 2.5 hours vs. 24 hours.
◮ Policy generalizes well to workload behavior not seen

during training (SPEC FP2006 benchmarks)

0.8

1.0

1.2

1.4

cactusADM gcc mcf tonto CPU 2006

Benchmark

N
o

rm
a

liz
e

d
 E

xe
c
u

ti
o

n
 T

im
e

Shadow Paging

Hardware−Assisted Paging

DSP−OFFSET

ASP−SVM

Paging Mode Selection Policy
Execution Time

Figure 2: Benchmark execution times normalized to HAP for select
benchmarks and the overall geometric mean.

