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Continuous Problem and Solution

Poisson's equation arises in such fields as astrophysics, plasma physics, electrostatics,
and fluid dynamics. We are solving it with infinite-domain boundary conditions:

20=F . ole) =~ [ Fwy+o (L) as lal o

|
Solution of this equation, with Green's function, G:

1
@) = (G (@) = [ Glo—u)f() dy . G(z) =~
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Method of Local Corrections (MLC)
Represent potential ¢ as linear superposition of small local discrete convolutions,
with global coupling represented using a non-iterative form of geometric multigrid.
Communication cost like that of a single iteration of multigrid.
Computational kernels are multidimensional FFTs on small domains.
\_ J
N
Local Discrete Convolutions
We can compute infinite-domain discrete Green'’s function G"on any finite domain at any
mesh resolution h. Compute G"~' once, store, and scale for any h.
_ _ 1,if g = O: hoo £hy — (AP—1( P fast convolution
h=1~h=1 _ , 11 g 7 (G" % f™") = (A")"(f") :
(A" G"7H)[g] = { 0, otherwise. ,  Uusing 3D FFT
Scaling:  G"[g] = h=LG"=1]g] (G« fMgl= > h*G"g—g'1f"d]
\ g'er’ J

MLC Algorithm Description

Domain decomposition strategy:

2 grid levels, fine (spacing h) and coarse (spacing H), with H/h = 4 fixed.

Decompose fine domain into fixed-sized patches with /N grid points along each dimension;
hence each patch has radius R =(N- 1)h/2.

1. For each fine patch of radius R,
compute local convolution on patch

of radius aR.

Example:

* patch kin red;
e blue dashed line around

patch k expanded by
factor of ox=3.25

h,init _ ~h h
3 =G" x f}

+ f

on patch k on patch k
expanded by factor o

2. Accumulate coarse-grid right-hand side by summing up
FH = Z AH (Coarsen(p ™))
k

ocalized contributions:

3. Compute global coarse convolution: ¢ = G# « FH

4. On each patch, solve a Dirichlet problem for Poisson, with face values

Dy = Z o1 + Interp (¢ — Z Coarsen(¢); ™))
k./

+ + +

Boundary values on the red face of patch k: contributions from qbZ,’lmt on dark blue regions,

Coarsen(gbz;init) interpolated from regions.
\For more than 2 levels, apply the above algorithm recursively.

High-Order Mehrstellen Stencils

. . . . h h h

A discrete Laplacian stencil of radius s has form (A"¢"), = Z AsPg s
and its truncation error looks like: s€[—s,s]?
Q/2—1

APt — Ao = Coh®A(AG) + ) h*? L22 (M) +h? L9 () + O(h9F?)

: o :

constant

order 2()’ order () + 2
linear differential operators

stencil radius s = [%J

27-point operator: s=1, () =6, CZ= 1/12
117-point operator: s=2, ()= 10, CZ= 1/12

Modifying right-hand side of A¢ = f by adding appropriate derivatives of f
gives a high-order approximation with compact stencil A”.
(And for ¢ harmonic, truncation error is O(h%) without modifying right-hand side.)

%
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Solution Error
24 Q
M —o= 0% + fll_O
N—— O alNh
From local truncation error, Localization error, from representation of
depends on local derivatives of ¢ smooth nonlocal coupling
and number of terms in Mehrstellen e No dependence on derivatives
correction of right-hand side. e O(1) relative to h
Typically ¢=4 or 6. * can adjust «, N, () (stencil) as needed
Y,
N
At finest level only, reduce cost of computing  _ greesneoogenes el falainlelelelelel
local convolutions by replacing them on anouter | . okl |
annulus with fields induced by Legendre example
. . with
polynomial expansions of order P. o 305
* Red + inner white (BR) region: G" * f" B=2.25
e Gray (aRR — BR) region: G" * Proj (f") AR
Precompute convolutions of G" with Legendre || [, SO A
polynomials, and communicate onlythe ¢+ L |
_ coefficients for this region. Error is O(h'"™"). y
4 A
Performance Analysis
Comparison with geometric multigrid (GMG) for 27-point Laplacian operator.
GMG with 10 V-cycles, vs. MLC with ¢ =4, () =6, N =33, a=3.25, f=2.25, P = 3.
flops loads (in bytes)  stores (in bytes) messages
Algorithm per gridpoint per gridpoint per gridpoint per phase
GMG 1210 3840 1920 20
MLC 463 7+398=5035 344 351 2
«
% step1  everything else )
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Accuracy Tests

Use g = 4, patch size N either 33 or 65. We find error O(hg, ... ) down to a barrier.
Uniformly refined grids: Adaptively refined grids:

max-norm of error
max-norm of error

) 1e-11 |

Above: Test case with 3 spherical
charges, adaptively refined grids.

| |
1024 2048 4096

1 / hﬁnest

+1 Q=6, =3.25, N=33
O: Q=6, a=3.25, N=65
% Q=10, ¢=3.25, N=33
O: Q=10, a=3.25, N=65

|
256 512 2048 4096 8192 16384 32768

1 / hﬁnest

+: =6, =3.25, N=33

: (=6, =2.125, N=65
O: (=6, o=3.25, N=65
¥: (=10, a=3.25, N=33
O: =10, =3.25, N=65

At finest level, project to Legendre
polynomials of degree up to P = 3.
o=3.25 = B=2.25;
a=2.125 = [=1.625.
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Scaling Tests on NERSC Cori | (Haswell)

Numerical parameters: () =6, N= 33, a = 3.25, with finest level = 2.25.
Plots of wall-clock time to solution (seconds).

10% longer than perfect scaling

line of perfect scaling

line of
perfect scaling

6666666666

number of cores number of cores
Strong scaling:
* fixed problem size with 107 grid points
* adaptive distribution

(0.2% of domain refined at finest level)
* over range 64 - 4K cores,

strong scaling efficiency > 60%

* tfime to solution 39.1 — .97 seconds

Replication weak scaling:
* adaptive base case with 107 grid points

* replicated to obtain larger problems
on 64 - 32K cores

* solution error independent of scale (~7 x 109)
* 92% weak scaling efficiency
* time to solution 39.1 - 42.4 seconds

* largest calculation has 5.1 x 10! unknowns,
with equivalent uniform-grid resolution of

\_ (64K)® = 2.8 x 10** unknowns.
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256 cores (8 nodes)
on NERSC Cori |

Comparison with HPGMG

e 6.1 sec for HPGMG with 10 V-cycles on uniform 1024° grid
(Sam Williams, private communication).

e 10.7 sec solve time for MLC on 10’ grid points adaptively distributed
(with 0.2% of domain refined at finest level).
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For More Information

o C. Kavouklis and P. Colella, “Computation of Volume Potentials on Structured Grids Using
the Method of Local Corrections”, submitted to Comm. App. Math. and Comp. Sci.,

alsoonhttp://arxiv.org/abs/1702.08111

 P. McCorquodale, P. Colella, G. T. Balls, and S. B. Baden, “A local corrections algorithm for
solving Poisson's equation in three dimensions”,

Comm. App. Math. and Comp. Sci., 2:57—81 (2007).
e Our website http://www.chombo.lbl.gov
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