Exploring Memory Coalescing for 3D-Stacked Hybrid Memory Cube

Abstract Introduction Evaluations
~ 90
Arguably, many data-intensive applications pose significant In the epoch of big data, many data-intensive applications with intense memory traffic such as data mining, machine learning, pattern X 8ol MSHR_BaS,fAdC%'\,",ﬁ -
guably y pp p g p g y pp Iy g g P |
challenges to conventional architectures and memory systems, recognitions, video processing, etc., pose significant challenges to memory systems. “2 701 Combined mmm—
. _ . . m 60-
especially when applications exhibit non-contiguous, irregular, “» Growing data-level parallelism triggers more frequent data accesses. 'O 50¢
and small memory access patterns. The long memory access £ 40!
latency can dramatically slow down the overall performance of “* Irregular memory-access patterns causes much higher cache miss rate. ";, 30|
1cati ' 1 1 ' : : : : : : : : : = 20¢
applications. The STowing desire of high memory bandwidth and A new 3D-stacked memory device named Hybrid Memory Cube (HMC) is designed to satisfy the desire of growing bandwidth [1]. While, 9 ol
low latency access stimulate the advent of novel 3D-staked the maximum throush : - : - @
. . . ghput (320 GB/s) of HMC 1s achieved through the transactions of large and flexible request packets [2, 3]. = O
memory devices such as the Hybrid Memory Cube (HMC), which S T n 7 I E ¥ 8 g g 9 9 v
provides significantly higher bandwidth compared with the “* DDR interface forces fixed request size based on the size of the cache line. - Q a = = = &

. . . . p 'L_/n‘b Z
conventional JEDEC DDR devices. In this resea.rc.:h, we introduce Therefore, a novel memory coalesing interface for HMC is introduced in this work to address the limited applicability of existing memory Benchmarks < =
bandwidth efficiency and the overall performance throughan | | T R0 ' Coalesced Requests ——
efficient and scalable memory request coalescing interfacefor | e [S
HMC. We present the design and implementation of this approach Architecture L Gasheee e N ST — S | R—
on RISC_V embedded cores Wlth attached HMC deVlceS Our rc l ec ure ..
evaluation results show that the new memory coalescer eliminates L e n 8w e A R R R e e e e
47.47% memory accesses to HMC and improves the overall e ——————————— r—— %2 ' Pipelined Request Coalesced' =
performance by 13.14% on average. A A . : _ Sorting Network Rg::s:" MSHR Enby '§ S

i | ! ; ' } 1 —> ‘Tl e T T || (g u S =
Workflow | L I-:ache L1 D-;)ache L1 I-:ache L1 D-:ache """" Rcia:quests: : e T physical | Tar%et \size| valia ° il Benchmarks -
: || . rom | _ .
. . . -— | | | | LLC { Unit - ! T ;\?28
1. Pipelined Request Sorting Network - 2 I it et L SRS U— | .) S24p el
5 : . {{ - D] LbHA A i B —-H - B
¢ Fully pipelined HMC controller overlaps the latency of - L2 Cache (LLC) o Wi N [Comparatorsjjjj QEJIG ___
memory accesses 3 I e l T _ } % ol R R BB = B
2 - 1 ' , ~
% We construct a pipelined request sorting network to hide the - >[]]«—» \U<—| o]1 y% s £ , I 5 B RRRRE _
coalescing latency. _ EET T F hesessnnsRasisre s = I I B B
2. DMC Unit = 3 3 3 3 E 8 8§ % $ 4 9 94
O a a & & 3
¢ A two-phase coalescing model is introduced in this work. 2 g =
- - - - Benchmarks
“* DMC unit is responsible for the first-phase memory coalescing, Pipelined Request Sortlng Network ssAddl‘eSS Extensions
: . 52 51 0
which constructs large request packets. S;:z:g @ ® @ @ ® ® @ © . . Conclusion
“» Combined requests are immediately pushed into the coalesced o m E i Va'lud fype LIRS Arckoss
request queue (CRQ), ! = 5 # : ‘ 0 o **In this study, we have presented a novel memory
3. Dynamic MSHRs S B — : : ~ < coalescer infrastructure for HMC.
' W ! I I Write
1 o
, , Input ! ' | | Output ** The memory coalescer largely reduces the memor
“*Dynamic MSHRs are responsible for the second phase Unsorted | ' | | | ! Sorted 0 Iat Y 4 boost gthy handwidth effic Y
coalescing through the request merging in the MSHR entries. Request 1R ' ' i ! Y Resuecs \/:: Valid ACCESs falenty ant bOOSIS the bantwidih STCIency.
. Y | Y .
. . . . ! | | | ! | i ** The evaluation shows that the memory coalescer
**Requested cache line 1s derived by: Subentry.addr = : ; 4 VI ! [T 1 et eliminated an average of 47.47% mer‘rxllory aCcCesses
: 1 : ()
Entry.addr + Line.ID X Line.size : ! ! ! ' ! :
g ‘ — = : ! “* The overall performance is improved by 13.14% on
Sorting Stage 1 : Stage 2 : Stage 3 : St 4 Implementatlons ave rage'
St : | : age
29° Applications
. RISC Multilevel
Coalescing Example / : %_’(Cache J‘ References:
Case A Case B Request Time Interval LLClMiss N .
Sequences [1] HMC Specification 2.1. Technical report, December 2015.
Request 1 MSHR 1 Request 2 MSHR 1 or At 77 107 137 167 e ” Request | [2] Xi Wang, John D. Leidel, Yong Chen, Memory Coalescing for Hybrid
oxA8 | 0xA9 | |o| oxaAs T?r:?:t 10| v 0xA7 | 0xA8 | |0| oxA8 T?r:?:t 10|V , w - _S"_it_er_ ! Raw Memory Cube. In ICPP 2018, Eugene, Oregon, USA.
<« 1288 —> < 1288 —> 1 0 Stage 1 _ P m—e— [3] Xi Wang, John D. Leidel, Yong Chen, Concurrent Dynamic Memory
[M'°r°°°de : [Library J Coalescing on GoblinCore-64 Architecture. In MEMSYS 2016,
MSHR 1 Subentry 2 D vieoe® ' Washington, DC, USA
MTS:;: Tz:;:: — o| oxas | Tt |4ofy | ™29t oo SRS (Gontbackic)
00| . Inf Inf | Unit /\
of oxAs [T [10fv > In;o : MSnHoR : nfo 3 D@ @00 Stage 4 , DISCI
Target : Target \“/
01 ' 0 OXA7 00 v IIIIIIIIIIII v —
Info . Info v l‘actical _
Optimized Pipeline v ~»omputing
l.abs

