
Memory Coalescing for Hybrid Memory Cube

Xi Wang
Texas Tech University

xi.wang@ttu.edu

John D. Leidel
Texas Tech University
john.leidel@ttu.edu

Yong Chen
Texas Tech University
yong.chen@ttu.edu

ABSTRACT
Arguably, many data-intensive applications pose signif-
icant challenges to conventional architectures and mem-
ory systems, especially when applications exhibit non-
contiguous, irregular, and small memory access pat-
terns. The performance of data-intensive workloads
running on traditional processors and architectures is
not as expected, especially when encountering the ir-
regular memory-access patterns that produce random
memory footprints. The long memory access latency
can dramatically slow down the overall performance of
applications. In addition, the growing data-level par-
allelism in these data-intensive workloads increase the
concurrency in data accesses and further complicate the
memory system support.

In order to reduce the latency of memory accesses,
two main research directions exist in current studies.
The first direction focuses on moving computation to
data, thus reducing the need and the memory traffic
of moving data between memory and processors. These
efforts include near data processing (NDP) and process-
ing in memory (PIM)[1, 2, 3, 4, 5]. While these tech-
niques bridge the gap between the processors and main
memory, they cannot eliminate memory accesses, thus
the bandwidth of conventional DDR devices restricts
the ceiling of the overall performance.

The second direction focuses on developing advanced
memory devices that satisfy the growing desire of high
memory bandwidth and low latency access. This moti-
vation stimulates the advent of novel 3D-staked memory
devices such as the Hybrid Memory Cube (HMC), which
provides significantly higher bandwidth compared with
the conventional JEDEC DDR devices [6, 7].

Even though many existing studies have been devoted

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

ICPP 2018 August 13 – 16, Eugene, Oregon
c© 2018 ACM. ISBN 123-4567-24-567/08/06. . . $15.00

DOI: 10.475/123 4

to achieving high bandwidth throughput of HMC, the
bandwidth potential cannot be fully exploited due to
the lack of highly efficient interfacing methodology de-
signed and optimized for HMC devices. As the size of
the memory request transactions is consistent with the
cache line size and the fixed burst size in DDR inter-
face, the memory request sizes are usually fixed as 64B
in mainstream architectures. It may evoke higher la-
tency and control overhead to apply the same policy to
the flexible packet-based HMC devices naively.

In this research, we introduce a novel memory coa-
lescer methodology that facilitates memory bandwidth
efficiency and the overall performance through an effi-
cient and scalable memory request coalescing interface
for HMC. The memory coalescer is positioned between
the last level data cache and the MSHRs. We overlap
the latency of the memory coalescing with the cache
blocking time when there is no available MHSR entry to
hold more cache misses. Three major components are
introduced in the memory coalescer: pipelined request
sorting network, DMC unit and dynamic MSHRs.

The pipelined request sorting network is responsible
for sorting all memory requests (misses from LLC), in-
cluding the load/store miss and write back requests.
Once the sorting completes, the ordered requests are
flushed to the DMC unit.

The DMC unit is responsible for the first-phase mem-
ory coalescing, which constructs large request packets.
When the sorting procedure completes, the DMC unit
takes over the sorted requests and coalesces the adja-
cent memory accesses into larger request packets. As
soon as the coalescing is accomplished, the combined
requests are immediately pushed into the coalesced re-
quest queue (CRQ).

A conventional MSHR entry usually consists of three
segments: requested block address, the hardware-dependent
target information, and a valid bit that indicates whether
an MSHR entry is in use. As the conventional MSHR
entry only holds the misses to a single cache line, the
size of the misses is always the same as the cache line
size. However, the size of coalesced requests could be
either one or multiple cache lines. Therefore, a 2-bit
segment named size, is appended to each MSHR entry
that represents the coalesced request size.

1

Figure 1: Coalescing Efficiency of the Memory Coa-
lescer

Figure 2: Bandwidth Efficiency of Coalesced and Raw
Requests

We present the design and implementation of this ap-
proach on RISC-V embedded cores with attached HMC
devices. Our evaluation results show that the new mem-
ory coalescer eliminates 47.47% memory accesses to HMC,
as shown in the Figure 1.

Besides the coalescing efficiency, we also investigate
the bandwidth utilizations. As shown in the Figure 2,
the average bandwidth efficiency of the raw requests is
only 7.43%. In contrast, conveying the coalesced re-
quests attains a bandwidth efficiency of 27.73%, which
is approximately 4X improvement on the bandwidth
utilization exhibited by the memory coalescer. In or-
der to quantify the memory coalescer’s impact on band-
width, the total bandwidth savings are also measured.
As reported in the Figure 3, the memory coalescer saves,
on average, 33.25GB of unnecessary control data trans-
fer across all test cases.

Finally, we record and analyze the runtime statistics
in order to study actual application speedup using our
approach. As reported in the Figure 4, the majority of
test cases demonstrated the runtime improvement by
over 10%. Particularly, the performance improvement
of FT and SparseLU achieved 25.43% and 22.21%, re-
spectively. On average, the memory coalescer delivered
13.14% performance gain across all test suites. These

Figure 3: Bandwidth Saving

Figure 4: Performance Improvement with Memory Co-
alescer

results indicate that our approach has a positive impact
on the performance of data-intensive applications.

1. REFERENCES
[1] Mingyu Gao et al. Practical near-data processing

for in-memory analytics frameworks. In PACT
2015.

[2] Kevin Hsieh et al. Transparent offloading and
mapping (tom): Enabling programmer-transparent
near-data processing in gpu systems. In ISCA 2016.

[3] Ping Chi et al. Prime: A novel
processing-in-memory architecture for neural
network computation in reram-based main
memory. In ISCA 2016.

[4] Junwhan Ahn et al. Pim-enabled instructions: A
low-overhead, locality-aware processing-in-memory
architecture. In ISCA 2015.

[5] Dongping Zhang et al. Top-pim:
throughput-oriented programmable processing in
memory. In HPDC 2014.

[6] HMC Specification 2.1. Technical report, December
2015.

[7] Shaizeen Aga and Satish Narayanasamy.
Invisimem: Smart memory defenses for memory
bus side channel. In ISCA 2017.

2

