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ABSTRACT

A GPU-type special processor is proposed for sorting large data
sets with, e.g., one billion keys. The parallel bubble sorter (PBS)
processor implements parallel bubble sort in hardware with a very
large set of special registers. A method to utilize the PBS for various
large sorting problems is presented.
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1 INTRODUCTION

Sorting is one of the key problems in data processing. It compasses
arranging a given data set in ascending or descending order accord-
ing to given key in each data set element. The key may be an integer
or floating point value, or a character string. Various algorithms
have been proposed for sorting, and in general they have time
complexity O(nlog n) where n is the number of keys to be sorted.
Many sorting algorithms have been modified for multiprocessor
or multicore systems, but their speedup can at best be the number
of processors or cores in the system which is still quite modest,
usually tens or at most hundreds [1]. Graphical Processing Units
(GPU) may be used for general purpose computing (GPGPU), and
sorting algorithms have been fine-tuned for them [2][3][8]. How-
ever, again the best possible speedup is still the number of cores in
such systems, and that is currently only in the thousands. Sorting
can also be done in distributed systems, but there communication
delays form a significant component in overall time [7][6].

We propose a GPU-like new processor, Parallel Bubble Sorter
(PBS), which would be specialized only for sorting problems [5].
It would contain a very large (e.g., billions or even trillions) set of
special processors to do sorting in linear time. We also propose
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Figure 1: PBS sorting element

a method on how PBS may be used in various sorting problems,
including those that have more keys than current PBS implementa-
tion.

2 METHODOLOGY

In general, the bubble sort is one of the worst sorting algorithms,
and it takes O(n?) time in one processor system. The PBS has a very
large set (N) of special sorting registers, and, if n < N, PBS will
perform n comparisons in parallel and sort the data set in O(n) time
with very small factors. The number of sorting registers should
be as large as technology allows to implement in one chip, e.g.,
millions, billions or trillions.

The PBS sorting registers (SR) contain two fields (see Fig. 1),
a key-value on which sorting is done, and a location indicator
for this key value in the original data set. The key values may be
(e.g., 64-bit ) integer or floating point values, or short character
strings. The location indicators may be (e.g.) 64-bit indexes for
arrays, pointers to memory, data base record addresses in file or
cloud servers. However, both fields should be relatively short so
that we can implement as many as possible SRs in one PBS.

One sorting element (see Fig. 1) will also include comparison
circuits, separately for integer, floating point, and (short) string
comparisons. At one sorting step, the key values in two adjacent
SRs are compared, and if they are in wrong order, all contents of
those registers are interchanged.

Sorting is done alternating even and odd steps. In even step, each
key in even numbered SR is compared to the key in the following
SR, and register values are interchanged if needed. All pairwise
comparisons and possible interchanges are completely independent
of each other, and may be done in parallel. In odd step the same
is done for all odd numbered SRs. With proper wiring, the same
compare circuits can be used both in even and odd steps.

Sorting is completed at the latest after n steps [4]. Sorting may
also be completed earlier, which is observed when two subsequent
sorting steps happen without interchanges. If the key set is already
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Figure 2: PBS as external device in system

sorted, sorting terminates immediately after the 15/ two steps. The
termination test is easy to implement. If any one of the sorting
elements needs a value interchange, it asserts the shared Change
signal (see Fig. 1). The Change signal value is stored and two subse-
quent not-asserted values indicate sorting to be completed. Also, a
separate counter can be kept to count the number of sorting steps
needed, and returned to the driver using PBS.

If the key set is too large for the PBS (n > N), then it must
be partitioned into size n segments, which are sorted separately
with PBS and then merged. Splitting such ultra-large key set and
subsequent merging may be done at various levels, e.g., by the
application, by the PBS device driver, or even by the PBS device
controller which may control many PBS processors.

Sorting of the original data set is done in multiple phases. The
application first defines and extracts the input array (with key, loca-
tion pairs) from the original data set (see Figure 2). The application
calls PBS device driver, which invokes PBS to do the sorting. PBS
reads the input array from memory to sorting registers (e.g., uti-
lizing DMA or shared memory), sorts it, and saves the resulting
output array back to memory. Finally, the application reorganizes
the original data set according to the location fields in the output
array. Alternatively, the application may just retain the output array
as an index with which it can access the data set in wanted key
order. If the data set was originally already in wanted order, the
device driver will inform the application on it, and the application
will not need to do any actions on the original data set.

If the key set is very large, sorting could be speeded up with
many PBSs. They could be controlled by the same device driver
which first spreads the work by giving each PBS their own block to
sort, and then merges the output arrays from multiple PBSs before
returning the control to calling application. Another alternative
to utilize multiple PBSs would be to implement them as separate
devices under higher level PBS device controller, just like one device
controller may control multiple hard disks. The device driver would
now communicate with the PBS device controller, and not with
individual PBSs. In this case the device controller could have more
intelligence and memory, and it could perform the merge operations

for the PBSs that it controls. Either way, each individual PBS should
be implemented as large as technology allows, because sorting in
PBS has time complexity O(n), whereas merge has time complexity

O(nlog (n/N)).

3 SUMMARY

We have proposed to build a very simple device, PBS, which can
be used in most circumstances to sort large data sets in linear time
with very small factors. PBS should be implemented with as many
sorting registers as current technology allows, so that sorting could
be done without merging for as large data sets as possible. We have
introduced a method on how PBS can be used to sort arbitrary large
data sets, or to create indexes to access arbitrary large data sets in
wanted order.
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