
Approved for public release

Unifying Software Distribution in ECP

Todd Gamblin
Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

1st Workshop on NSF and DOE High Performance Computing Tools
Eugene, Oregon
July 11, 2019

2

What is the Exascale Computing Project (ECP)?

ECP is an accelerated research and development project
funded by the US Department of Energy (DOE) to ensure
all necessary pieces are in place to deliver the nation’s
first, capable, exascale ecosystem, including mission
critical applications, an integrated software stack, and
advanced computer system engineering and hardware
components.

3

ECP by the Numbers

A seven-year, $1.7 billion R&D effort that launched in 2016

6 core DOE National Laboratories: Argonne, Oak Ridge,
Berkeley, Lawrence Livermore, Los Alamos, Sandia

•  Staff from most of the 17 DOE national laboratories
take part in the project

More than 100 top-notch R&D teams

3 technical focus areas:
 Application Development, Software Technology,
 Hardware and Integration

7
YEARS

$1.7B

6
CORE DOE

LABS

3
TECHNICAL

FOCUS
AREAS

100
R&D TEAMS

1000
RESEARCHERS

4

Exascale machines will support a wide range of science applications

Additive
Manufacturing
(ExaAM)

Climate (E3SM)

Magnetic
Fusion

(WDMApp)

Modular Nuclear
Reactors
(ExaSMR) Wind Energy (ExaWind)

Subsurface (GEOS)

Urban systems (Urban)

Compressible flow (MARBL)

Combustion (Nek5000)

5

Open source projects lay the foundation for DOE simulations

OpenMPI

MPICH

Kokkos

RAJA

Spack

Filesystems & I/O

Resource Managers

Parallel Programming Models

MFEM CHOMBO

Meshing / Finite Elements

Scientific Visualization

Packaging/Build

Parallel Solvers

6

ECP is building a software distribution for Exascale

•  “Nation’s first capable exascale ecosystem”

•  Distribution effort required is similar to efforts like Red
Hat, Debian, Ubuntu, etc.
–  Curation and vetting of software
–  Packaging, building
–  Wide distribution

•  Not as mainstream, not quite as widespread

•  Platform-wise, ECP is more complex and broader
–  Many (often unique) platforms
–  Many software ecosystems
–  From-source distribution
–  Must support Optimization, GPUs, fast networks

7

We’re also currently at the intersection of cloud and HPC

•  Cloud has largely moved to containerized
deployment

•  Containers (moreso than VMs) look viable for HPC,
but there are challenges
–  Optimized containers
–  Deeper integration with host architecture/network
–  Building containers in secure environments
–  Support at HPC centers for DevOps automation

•  Still need to support traditional, modules-based HPC
workflows
–  Bare-metal deployments will continue to be

mainstream at HPC centers for some time

8

ECP is working to unify software distribution

•  Three main requirements:
1.  Research & Development

• New software to drive automation
• New capabilities to enable distribution of optimized artifacts
• Workflow automation for facilities and users

2.  Infrastructure
• Automated build farms to produce artifacts
• Hosting + bandwidth for distribution
• HPC cycles to do the building

3.  Process
• Humans have to be involved in the software curation process
• SDKs, E4S, and facility collaboration are ECP’s software curation

vehicles

Containers

Packaging

Bare metal
HPC

Infrastructure

9

There are many activities around software
distribution and deployment within ECP

Software Technologies (ST) Hardware Integration (HI)

SW Dev Kits (SDK)

Extreme-scale
Scientific Software
Stack (E4S)

Containers

App Development (AD)

Spack

Facilities

Integration Integration

Spack Stacks

Software Packaging
Continuous
Integration (CI)

Facility Deployment

Build Pipelines

Software Delivery

Public package repository
(source + binaries)

10

• Andrew Younge - Containers
• Dave Montoya – Facility Deployment
• Sameer Shende – E4S

Following three talks give deep dives of each of these areas

11

•  We want to provide optimized builds for Spack packages and containers
–  Code level choices (O2, O3)
–  Architecture specific choices (-mcpu=cortex-a7, -march=haswell)

•  Architectures vary as to how much they expose features to users
–  x86 exposes feature sets in /proc/cpuinfo
–  Arm hides many features behind revision number

•  Methods for accessing architecture optimizations
–  Vary by both compiler and architecture

•  Gcc –mcpu vs. –march, for example
•  Relies on architectures providing a programmatic way to get information

•  We want to expose the names users understand
–  Thunderx2, cortex-a7 for arm
–  Power8, power9 for IBM
–  Haswell, skylake for Intel

Specific architecture target information – in progress

12

•  Allows developers to bundle Spack configuration with their
repository

•  Can also be used to maintain configuration together with Spack
packages.
–  E.g., versioning your own local software stack with consistent

compilers/MPI implementations

•  Manifest / Lockfile model pioneered by Bundler is becoming
standard
–  spack.yaml describes project requirements
–  spack.lock describes exactly what versions/configurations were

installed, allows them to be reproduced.

Spack has added environments and spack.yaml / spack.lock
Simple spack.yaml file

install
build

project
spack.yaml file with
names of required

dependencies

Lockfile describes
exact versions installed

Dependency
packages

Concrete spack.lock file (generated)

13

• We recently started providing base images on DockerHub with Spack
preinstalled.

• Very easy to build a container with some Spack packages in it:

Spack environments help with building containers

spack-docker-demo/
Dockerfile
spack.yaml

Base image with Spack
in PATH

Copy in spack.yaml
Then run spack install

List of packages to install,
with constraints

Build with docker build .

Run	with	Singularity	
(or	some	other	tool)	

14

•  CI at HPC centers is notoriously difficult
–  Security concerns prevent most CI tools from being run by staff or by users
–  HPC centers really need to deploy trusted CI services for this to work

•  We are developing a secure CI system for HPC centers:
–  Setuid runners (run CI jobs as users); Batch integration (similar, but parallel jobs); multi-center runner support

•  Onyx Point will upstream this support into GitLab CI
–  Initial rollout in FY19 at ECP labs: ANL, ORNL, NERSC, LLNL, LANL, SNL
–  Upstream GitLab features can be used by anyone!

Through ECP, we are working with Onyx Point to deliver
continuous integration for HPC centers

User checks out /
commits code

Two-factor authentication

Fast mirroring

Setuid runner Batch runner

Trusted runners at HPC facility

15

Builds under ECP will be automated with
continuous integration

Public binary package repo

Spack users

Regular binary
builds + tests
in GitLab CI

16

•  Allow users to easily express a huge cross-product of
specs
–  All the packages needed for a facility
–  Generate modules tailored to the site
–  Generate a directory layout to browse the packages

•  Build on the environments workflow
–  Manifest + lockfile
–  Lockfile enables reproducibility

•  Relocatable binaries allow the same binary to be used
in a stack, regular install, or container build.
–  Difference is how the user interacts with the stack
–  Single-PATH stack vs. modules.

Spack stacks: combinatorial environments
for entire facility deployments

17

•  Further builds on environments
–  Support auto-generating GitLab CI jobs
–  Can run in a Kube cluster or on bare metal runners at an HPC site
–  Sends progress to CDash

•  See PR #11612

GitLab CI Integration for Binary Build
Pipelines

18

ECP is working towards a periodic, hierarchical release process

•  In ECP, teams increasingly need to ensure that their libraries
and components work together
–  Historically, HPC codes used very few dependencies

•  Now, groups of teams work together on small releases of
“Software Development Kits”

•  SDKs will be rolled into a larger, periodic release.

Develop

Package

Build

Test

Deploy

Math
Libraries

Develop

Package

Build

Test

Deploy

Visualization

Develop

Package

Build

Test

Deploy

Programming
Models …

Build

Test Deploy

Integrate

E4S

ECP-wide
software release

https://e4s.io

19

All of this is still in progress, but hopefully:

1.  Continuous integration for HPC users actross DOE (and elsewhere)

2.  A robust, widely available, and tested HPC software distribution

3.  Support for optimized packaging and containers across diverse
architectures

What will ECP’s software legacy be?

