Containers in HPC

. VAL =37
///IVA‘/Q‘;

National Nuclear Security Administration

st . -

PRESENTED BY — Andrew J. Younge
Sandia National Laboratories

ajyoung@sandia.gov

Sandia National Laboratories is a multimission

Workshop on NSF and DOE High Performance Computing Tools laboratory managed and operated by National

Technology & Engineering Solutions of Sandia, LLC, a
wholly owned subsidiary of Honeywell International

th Inc., for the U.S. Department of Energy’s National
J u l y 1 l 4 2 O 1 9 Nuclear Security Administration under contract
DE-NA0003525.



Motivation

= DOE/NNSA and Sandia have long history of investment in HPC

= Mission workloads computational requirements demand scale
= Tightly coupled BSP simulation codes eg: MPI
= Extensive computing capacity - CTS cluster resources
= Intermediate computing capability — ATS advanced supercomputing

= Public cloud computing is often prohibitive for Sandia
= Both in cost and security models

= However, HPC is not traditionally as flexible as “the cloud”
= Shared resource models
= Static software environments
= Not always best fit for emerging apps and workflows

= What about Containers?
= Can we support containers in HPC in the same way as industry?
= Does this model fit for HPC and emerging workloads across DOE?



What is a Container?

= Unit of software which packages up all code and dependencies
necessary to execute single process or task

= Encapsulates the entire software ecosystem (minus the kernel)

= OS-level virtualization mechanism
= Different than Virtual Machines
= Think "chroot” on steroids, BSD Jails
= Dependent on host OS, which is (usually) Linux
= Uses namespaces (user, mount, pid, etc)

= Docker is the leading container runtime
= Used extensively in industry/cloud enterprise
= Foundation for Kubernetes and Google cloud
= Supported in Amazon AWS cloud




Initial HPC Container Vision \
Z \
ASC

= Support HPC software development and testing on laptops/workstations
= Create working container builds that can run on supercomputers
= Minimize dev time on supercomputers

= Developers specify how to build the environment AND the application
= Users just import a container and run on target platform
= Have many containers, but with different manifests for arch, compilers, etc.
= Not bound to vendor and sysadmin software release cycles

= Want to manage permutations of architectures and compilers
= x86 & KNL, ARMv8, POWERY, etc.
= Intel, GCC, LLVM, etc

= Performance matters
= Use mini-apps to “shake out” container implementations on HPC
= Envision features to support future workflows (ML/DL/in-situ analytics)



Containers in HPC

= BYOE - Bring-Your-Own-Environment

= Developers define the operating environment and system libraries in which their
application runs

= Composability
= Developers have control over how their software environment is composed of modular
components as container images

= Enable reproducible environments that can potentially span different architectures

= Portability
= Containers can be rebuilt, layered, or shared across multiple different computing systems
= Potentially from laptops to clouds to advanced supercomputing resources

= Version Control Integration
= Containers integrate with revision control systems like Git

= Include not only build manifests but also with complete container images using container
registries like Docker Hub



Container features not wanted in HPC

= Overhead
= HPC applications cannot incur significant overhead from containers

= Micro-Services
= Micro-services container methodology does not apply to HPC workloads
= 1 application per node with multiple processes or threads per container

= On-node Partitioning
= On-node partitioning with cgroups is not necessary (yet?)

= Root Operation
= Containers allow root-level access control to users
= On supercomputers this is unnecessary and a significant security risk for facilities

= Commodity Networking

- ?ogtain?rs and their network control mechanisms are built around commodity networking
TCP/IP

= Supercomputers utilize custom interconnects w/ OS kernel bypass operations



HPC Container Runtimes

= Docker is not good fit for running HPC workloads
= Building with Docker on my laptop is ok

= Security issues, no HPC integration

= Several different container options in HPC

N f

> s
SHIFTER J
= All 3 HPC container runtimes are usable in HPC today

1
00

Charliecloud

= Each runtime offers different designs and OS mechanisms
= Storage & mgmt of images
= User, PID, Mount namespaces
= Security models
= OCI vs Docker vs Singularity images
= Image signing, validation, registries, etc



. | Singularity Runtime at Sandia

= Singularity best for current needs
= OSS, publicly available, support backed by Sylabs
= Simple image plan, support for many HPC systems
= Docker image support

= Multiple architectures
= X86_64, ARM64, POWER9
= Initial GPU support

* singualrity exec --nv appl.simg /opt/bin/app
= Large community involvement

= Singularity deployed at Sandia
= CTS-1 and TLCC clusters
= Astra — First Petascale ARM supercomputer ==

= Ongoing collaboration with Sylabs




Container DevOps

= Impractical to use large-scale
supercomputers for DevOps and

fl\.
E@E

testing
= HPC resources have long batch queues \ /
= Large effort to port to each new machine $ docker pull gitiab.sandia.goviusriapp1:latest o .
g p $d:kg: p'“u“ '% '; 1385%(;'81308,:8":;81 - ché:gzl/?;itt{agﬂla?\zggvgluserlapp1:latest

L. . . $ ssh ct1 -C “mpirun -np X appl.exe sub a s
= Deployment portability with containers N o

= Develop Docker containers on your laptop or Gitlab Container Registry

Service
workstation ‘ V |

= Leverage registry services

= Import container to target deployment $ docker build app1 $s|ngulantypull app1.img
$ docker login gitlab.sandia.gov docker://gitlab.sandia.gov/user/app1:latest
* Integrate with vendor libs (via ABI compat) ?"“"‘*“" Sepnn X shodartyes b oo

= Leverage local resource manager (SLURM)

= Separate networks maintain separate
reqgistries




0 | Example Muelu Dockerfile

FROM ajyounge/dev-tpl = Example Trilinos container build

WORKDIR /build/trilinos =  Muelu Tutorial

4 Download Trilinos = Trilinos on version 12.8.1

COPY do- figure /build/trilinos/ - I -

RUN wggtcgﬁvlh}étps : /I;irilincl)s%org/ e\ USGS .ajyounge/dev tpl as base
/files/trilinos-12.8.1-Source.tar.gz \ contalner

-0 /build/trili /trili .t . . . . .
SRS EE AT IROS e e Bar e - Contains necessary third party libraries

# Extract Trilinos source file fOFl)U”thQ

RUN tar xf /build/trilinos/trilinos.tar.gz i} . :
RUN mv /build/trilinos/trilinos-12.8.1-Source \ Parmetls, NetCDF’ CompllerS! etc.

/build/trili /trili - T I I
RUN mkgir /biilclir/liiilirlloér/lgiilinos—build ThIS IS a Slmple V_erSIOn’ more_
complex Dockerfile allows various

# Compile Trilinos .
RUN /build/trilinos/do-configure features and versions to be
RUN cd /build/trilinos/trilinos-build && \ Se|ected

make -3 3

# Link Muelu tutorial

RUN 1ln -s /build/trilinos/trilinos-build/pkgs/...\
/opt/muelu-tutorial

WORKDIR /opt/muelu-tutorial



n I A Tale of Two Systems

Run a series of benchmarks and Sandia mini-apps to evaluate each system.
Use same container images, built using Docker & deployed to both Volta and Amazon cloud.

Volta Amazon EC2
= Cray XC30 HPC system = Common public cloud service from AWS
= 56 nodes: = 48 c3.8xlarge instances:
= 2x Intel "lvyBridge” E5-2695v2 CPUs = 2x Intel “lvyBridge” E5-2680 CPUs
= 24 cores total, 2.4Ghz = 16 cores total 32 vCPUs (HT), 2.8Ghz
= 64GB DDR3 RAM = 10 core chip (2 cores reserved by AWS)
= 60 GB RAM

= Cray Aries Interconnect

10 Gb Ethernet network w/ SR-I0V
2x320 SSD EBS storage per node

= Shared DVS filesystem

= Cray CNL ver. 5.2.UP04
= 3.0.101 kernel RHEL7 compute image
= Running custom Singularity = Running Docker 1.19

= 32 nodes used to keep equal core count Run in dedicated host mode

= NNSA ASC testbed at Sandia = 48 node virtual cluster = $176.64/hour



2 | HPCG Weak Scaling (log log scale)

100.00

GFLOPS

10.00
48

——Native_CrayMPI
——Singularity IntelMPI

96 192
Cores

KVM_MPICH
—AWS Docker IntelMPI

99.8%
89.3%
81.9%
72.9%

384 768

——Singularity__CrayMPI



s I Containers on Secure Networks

= SNL containers are primarily built on unclassified systems then moved
to air gapped networks via automated transfers

= Cybersecurity approvals in place to run containers on all networks

= Security controls used in running containers on HPC systems
= Working to validate software compliance

= Automated Transfer Services to air gapped networks

= Challenges of automated transfers
= Size — 5GB-10GB are ideal
= Integrity — md5 is enough
= Transfer policies — executables, code, etc.

Containers will fully work with automated transfers for use in air gapped networks



Container Takeaways

= Use Docker to build a manifests to assemble full app suites from scratch
= Developers specify base OS, configuration, TPLs, compiler installs, etc

= Leverage base or intermediate container images (eg: TOSS RPMs in a container)
= Leverage container registry services for storing images
= Import/flatten Docker images into Singularity & run on HPC resources

= Advantages
= Simplify deployment to analysts (just run this container image)
= Simplify new developer uptake (just develop FROM my base container image)
= Decouple development from software release cycle issues
= Reproducibility has a new hope?

= Caveats
= ABI compatibility with MPIl an ongoing issue

= Focus is on x86_64 images, alternative archs require more work
= Can’t build an ARM64 container image from my Mac laptop w/ x86_64

= Containers are an option in HPC, not a mandate




/.'.:\
ECP Supercontainers Project E\(\g\)P

EXASCALE COMPUTING PROJECT

= Joint effort across Sandia, LANL, LBNL, LLNL, U. of Oregon

= Ensure container runtimes will be scalable, interoperable, and well integrated across DOE
= Enable container deployments from laptops to Exascale

= Assist ECP applications and facilities leverage containers most efficiently

= Three-fold approach
= Scalable R&D activities

= Collaboration with related ST and AD projects BEFORE

= Training, Education, and Support 4 B
A

= Activities conducted in the context of interoperability

= Portable solutions
= Optimized E4S container images for each machine type
= Containerized ECP that runs on Astra, A21, El-Capitan, ...

= Work for multiple container implementations
= Not picking a “winning” container runtime
= Multiple DOE facilities at multiple scales




Supercontainer R&D Activities

= Containers must work at Exascale!
= Embrace architectural diversity

R&D Topics:
= Advanced Container Runtimes = Expand interoperability
= Efficient container launch = Decrease reliance on MP| ABI compatibility
= Comparison studies = Foster community standards
= Optimized Images = Other opportunities
= E4S environment = Service container orchestration
= Use Spack! = Workflow ensemble support
= Vendor images = Reproducibility?
1




Containerized Application Support

= Interface with key ECP ST and AD app development areas

= Advise and support the container usage models necessary for deploying
first Exascale apps

= |nitiate deep-dive sessions with app groups
= Use provided base images

= Enable Spack in container images
= Tuned & supported by facilities via HI

= Leverage DOE Gitlab Continuous Integration mechanisms
= Integrate containers into current Cl plan

cCP

EXASCALE COMPUTING PROJECT



Nalu - Container vs. Native - Strong Scaling

18
7,000 1.200 |
6,000 S —— T 1.150 |
o 5,000 = o
3 1.100 3 |
@ &
c 4,000 a
= 1.050 &
£ 3,000 =
& 1=
© 1.000 ©
22,000 ~
1,000 0.950
0 0.900
0 2 4 6 8 10 12 14 16 18 20 ]
Nodes |
Nalu: A generalized unstructured massively parallel
low Mach CFD flow code designed to support ——Native —X=Container Ratio

energy applications of interest

Agelastos, A, Younge, A et. al, (U) Quantifying Metrics to Evaluate Containers for Deployment and Usage of NNSA Production Applications, NECDC 2018




SNL ATDM Mission App

SPARC - Container Strong Scaling - HIFiRE-1

4:15:00
4:00:00
3:45:00
3:30:00
3:15:00
__3:00:00
A 2:45:00

g 2:30:00

< 2:15:00
EET 2:00:00 Points:
£ 1:45:00 » Supporting SPARC containerized
& 1:30:00 build & deployment
1:15:00 * Deployed on Sandia CTS-1
;fggfgg « Near-native performance using a
0:30:00 contginer : :
015:00 . - « Testing HIFIRE-1 Experiment
0:00:00 (MacLean et al. 2008)
36 72 144 288 576

B SPARC Container M SPARC Native




Emerging workloads on HPC with Containers

= Support merging AI/ML/DL frameworks on HPC
= Containers may be useful to adapt ML software to HPC ‘
= Already supported and heavily utilized in industry

= Extreme-scale Scientific Software Stack (E4S) |
= Includes TensorFlow & Pytorch in container image i

= Working with DOE app teams to deploy custom ML tools in containers
= |Investigating scalability challenges and opportunities

S

TensorFlow PYTLRCH |



Warning: Currently just Slideware

Future Containerized Cl Pipeline

I
= As a developer | want to generate container builds from code pull requests so
that com‘a/ners are used to test new code on target HPC machines. |

/
Contirfuous Integration

|[( Build l Test ‘ Deploy

zﬂ@

Spack Binary Mirror Heterogeneous Build Farm I

Internal Network




Training Education & Support

= Containers involve new software deployment methodology

= Training and education is needed to help ECP community to best utilize
new functionality

= Technical Reports
= Best Practices for building software using containers

= Taxonomy survey to survey current state of the practice

= Training sessions
= International Supercomputing Conference 2019

= [IEEE/ACM Supercomputing 2019
= ECP All-Hands Meeting

= Provide single source of knowledge for groups interested in containers



Conclusion

= Demonstrated value of container models in HPC Acknowledgements:
= Deployments in testbeds to production HPC Kevin Pedretti (1423)
= |nitial performance is promising Anthony Agelastos (9326)

_ : : Si Hammond (1422)
Modern DevOps approach with containers Doug Pase (9326)

= Deployed on CTS systems Aron Warren (9327)

= ECP Supercontainers Project Stephen Olivier (1423)
= Enable containers Exascale Justin Lamb (9326)
- Embr ftware diversity while insuring int bilit Erik Illescas (9327)
! gce software .|v.erS| y while insuring interoperability Ron Brightwell (1423)
= Simplify HPC applciation deployment
Collaborators:
Shane Canon (LBNL/NERSC)

Todd Gamblin (LLNL)
Reid Priedhorsky (LANL)

E \(Cﬁ) I: /‘ Sameer Shende (Oregon)

= Containers can increase software flexibility in HPC



CANOPIE-HPC WORKSHOP

Containers and New Orchestration Paradigms for
Isolated Environments in HPC

canopie-hpc.org

= In coordination with Supercomputing 2019 (SC19) in Denver

= Proceedings published in IEEE TCHPC

= Submission Deadline: Monday, September 2nd, 2019

= Conference Date: Monday, November 18th, 2019

= SC19 workshop dedicated to containers & software environments



(@) ENERGY i Thanks!

T AL =37

LA LY o Laboratories ajyoung@sandia.gov
W‘:':_f-wamYW! Want to learn more about containers?

@ Ty Attend the Container Tutorial @ SC19

Interested in helping & collaborating?

Students, Postdocs, Collaborators...




&

@ ENERGY () Sandi ,
— National Backup Slides
A A Laboratories

National Nuclear Secavity Adminetral




gy 28 PFLOPS Peak . ATSEv Ad.v-an_ced Tri-lab Software Environment
szRM CPUs, ~150k cores Supports Singularity container runtime

';.,{z/s emory bandwidth peak oy - . o
/] B S0 Building ATSE container images

1.2 MW . Developing Pytorch ARM containers




