
P R E S E N T E D B Y

Sandia National Laboratories is a multimission
laboratory managed and operated by National

Technology & Engineering Solutions of Sandia, LLC, a
wholly owned subsidiary of Honeywell International
Inc., for the U.S. Department of Energy’s National

Nuclear Security Administration under contract
 DE-NA0003525.

Containers in HPC

Andrew J. Younge
Sandia Nat ional Laborator ies

ajyoung@sandia.gov

Workshop on NSF and DOE High Performance Computing Tools

July 11th, 2019
SAND2019-7980 C

Motivation

§  DOE/NNSA and Sandia have long history of investment in HPC
§ Mission workloads computational requirements demand scale
§ Tightly coupled BSP simulation codes eg: MPI
§ Extensive computing capacity - CTS cluster resources
§  Intermediate computing capability – ATS advanced supercomputing

§  Public cloud computing is often prohibitive for Sandia
§ Both in cost and security models

§  However, HPC is not traditionally as flexible as “the cloud”
§ Shared resource models
§ Static software environments
§ Not always best fit for emerging apps and workflows

§ What about Containers?
§ Can we support containers in HPC in the same way as industry?
§ Does this model fit for HPC and emerging workloads across DOE?

What is a Container?

§ Unit of software which packages up all code and dependencies
necessary to execute single process or task

§ Encapsulates the entire software ecosystem (minus the kernel)
§ OS-level virtualization mechanism
§ Different than Virtual Machines
§ Think ”chroot” on steroids, BSD Jails
§ Dependent on host OS, which is (usually) Linux
§ Uses namespaces (user, mount, pid, etc)

§ Docker is the leading container runtime
§ Used extensively in industry/cloud enterprise
§ Foundation for Kubernetes and Google cloud
§ Supported in Amazon AWS cloud

Initial HPC Container Vision

§ Support HPC software development and testing on laptops/workstations
§ Create working container builds that can run on supercomputers
§ Minimize dev time on supercomputers

§ Developers specify how to build the environment AND the application
§ Users just import a container and run on target platform
§ Have many containers, but with different manifests for arch, compilers, etc.
§ Not bound to vendor and sysadmin software release cycles

§ Want to manage permutations of architectures and compilers
§ x86 & KNL, ARMv8, POWER9, etc.
§  Intel, GCC, LLVM, etc

§ Performance matters
§ Use mini-apps to “shake out” container implementations on HPC
§ Envision features to support future workflows (ML/DL/in-situ analytics)

Containers in HPC

§  BYOE - Bring-Your-Own-Environment
§ Developers define the operating environment and system libraries in which their

application runs

§  Composability
§ Developers have control over how their software environment is composed of modular

components as container images
§ Enable reproducible environments that can potentially span different architectures

§  Portability
§ Containers can be rebuilt, layered, or shared across multiple different computing systems
§ Potentially from laptops to clouds to advanced supercomputing resources

§  Version Control Integration
§ Containers integrate with revision control systems like Git
§  Include not only build manifests but also with complete container images using container

registries like Docker Hub

Container features not wanted in HPC

§ Overhead
§ HPC applications cannot incur significant overhead from containers

§ Micro-Services
§ Micro-services container methodology does not apply to HPC workloads
§ 1 application per node with multiple processes or threads per container

§ On-node Partitioning
§ On-node partitioning with cgroups is not necessary (yet?)

§  Root Operation
§ Containers allow root-level access control to users
§ On supercomputers this is unnecessary and a significant security risk for facilities

§  Commodity Networking
§ Containers and their network control mechanisms are built around commodity networking

(TCP/IP)
§ Supercomputers utilize custom interconnects w/ OS kernel bypass operations

HPC Container Runtimes
§ Docker is not good fit for running HPC workloads
§  Building with Docker on my laptop is ok
§ Security issues, no HPC integration

§ Several different container options in HPC

§ All 3 HPC container runtimes are usable in HPC today
§ Each runtime offers different designs and OS mechanisms
§  Storage & mgmt of images
§ User, PID, Mount namespaces
§  Security models
§ OCI vs Docker vs Singularity images
§  Image signing, validation, registries, etc

Singularity Runtime at Sandia 8	

§ Singularity best for current needs
§ OSS, publicly available, support backed by Sylabs
§ Simple image plan, support for many HPC systems
§ Docker image support
§ Multiple architectures
§  X86_64, ARM64, POWER9

§  Initial GPU support
§  singualrity exec --nv app1.simg /opt/bin/app

§ Large community involvement

§ Singularity deployed at Sandia
§ CTS-1 and TLCC clusters
§ Astra – First Petascale ARM supercomputer

§ Ongoing collaboration with Sylabs

Container DevOps 9	

§  Impractical to use large-scale
supercomputers for DevOps and
testing
§ HPC resources have long batch queues
§ Large effort to port to each new machine

§ Deployment portability with containers
§ Develop Docker containers on your laptop or

workstation
§ Leverage registry services
§  Import container to target deployment
§  Integrate with vendor libs (via ABI compat)
§ Leverage local resource manager (SLURM)
§ Separate networks maintain separate

registries

Example Muelu Dockerfile 10	

▪  Example Trilinos container build
▪  Muelu Tutorial
▪  Trilinos on version 12.8.1

▪  Uses ajyounge/dev-tpl as base
container
▪  Contains necessary third party libraries

for building
▪  Parmetis, NetCDF, compilers, etc.

▪  This is a simple version, more
complex Dockerfile allows various
features and versions to be
selected

FROM ajyounge/dev-tpl

WORKDIR /build/trilinos

Download Trilinos
COPY do-configure /build/trilinos/
RUN wget -nv https://trilinos.org/...\
 /files/trilinos-12.8.1-Source.tar.gz \
 -O /build/trilinos/trilinos.tar.gz

Extract Trilinos source file
RUN tar xf /build/trilinos/trilinos.tar.gz
RUN mv /build/trilinos/trilinos-12.8.1-Source \
 /build/trilinos/trilinos
RUN mkdir /build/trilinos/trilinos-build

Compile Trilinos
RUN /build/trilinos/do-configure
RUN cd /build/trilinos/trilinos-build && \
 make -j 3

Link Muelu tutorial
RUN ln -s /build/trilinos/trilinos-build/pkgs/...\

 /opt/muelu-tutorial
WORKDIR /opt/muelu-tutorial

A Tale of Two Systems 11

§  Cray XC30 HPC system

§  56 nodes:
§  2x Intel ”IvyBridge” E5-2695v2 CPUs
§  24 cores total, 2.4Ghz
§  64GB DDR3 RAM

§  Cray Aries Interconnect

§  Shared DVS filesystem

§  Cray CNL ver. 5.2.UP04
§  3.0.101 kernel
§  Running custom Singularity

§  32 nodes used to keep equal core count

§  NNSA ASC testbed at Sandia

Amazon EC2
§  Common public cloud service from AWS

§  48 c3.8xlarge instances:
§  2x Intel “IvyBridge” E5-2680 CPUs
§  16 cores total 32 vCPUs (HT), 2.8Ghz
§  10 core chip (2 cores reserved by AWS)
§  60 GB RAM

§  10 Gb Ethernet network w/ SR-IOV

§  2x320 SSD EBS storage per node

§  RHEL7 compute image
§  Running Docker 1.19

§  Run in dedicated host mode

§  48 node virtual cluster = $176.64/hour

Volta

Run a series of benchmarks and Sandia mini-apps to evaluate each system.
Use same container images, built using Docker & deployed to both Volta and Amazon cloud.

HPCG Weak Scaling (log log scale) 12

Containers on Secure Networks 13

§ SNL containers are primarily built on unclassified systems then moved
to air gapped networks via automated transfers

§ Cybersecurity approvals in place to run containers on all networks
§ Security controls used in running containers on HPC systems
§ Working to validate software compliance

§ Automated Transfer Services to air gapped networks
§ Challenges of automated transfers
§ Size – 5GB-10GB are ideal
§  Integrity – md5 is enough
§ Transfer policies – executables, code, etc.

Containers will fully work with automated transfers for use in air gapped networks

Container Takeaways

§ Use Docker to build a manifests to assemble full app suites from scratch
§  Developers specify base OS, configuration, TPLs, compiler installs, etc
§  Leverage base or intermediate container images (eg: TOSS RPMs in a container)

§ Leverage container registry services for storing images
§  Import/flatten Docker images into Singularity & run on HPC resources

§ Advantages
§ Simplify deployment to analysts (just run this container image)
§ Simplify new developer uptake (just develop FROM my base container image)
§ Decouple development from software release cycle issues
§ Reproducibility has a new hope?

§ Caveats
§ ABI compatibility with MPI an ongoing issue
§ Focus is on x86_64 images, alternative archs require more work
§  Can’t build an ARM64 container image from my Mac laptop w/ x86_64

§ Containers are an option in HPC, not a mandate

ECP Supercontainers Project

§  Joint effort across Sandia, LANL, LBNL, LLNL, U. of Oregon
§  Ensure container runtimes will be scalable, interoperable, and well integrated across DOE
§ Enable container deployments from laptops to Exascale
§ Assist ECP applications and facilities leverage containers most efficiently

§  Three-fold approach
§ Scalable R&D activities
§ Collaboration with related ST and AD projects
§ Training, Education, and Support

§  Activities conducted in the context of interoperability
§ Portable solutions
§  Optimized E4S container images for each machine type
§  Containerized ECP that runs on Astra, A21, El-Capitan, …

§ Work for multiple container implementations
§  Not picking a “winning” container runtime

§ Multiple DOE facilities at multiple scales

Supercontainer R&D Activities

§ Containers must work at Exascale!
§ Embrace architectural diversity

 R&D Topics:
§ Advanced Container Runtimes
§  Efficient container launch
§  Comparison studies

§ Optimized Images
§  E4S environment
§  Use Spack!
§  Vendor images

§  Expand interoperability
§  Decrease reliance on MPI ABI compatibility
§  Foster community standards

§  Other opportunities
§  Service container orchestration
§  Workflow ensemble support
§  Reproducibility?

Containerized Application Support

§  Interface with key ECP ST and AD app development areas
§ Advise and support the container usage models necessary for deploying

first Exascale apps
§  Initiate deep-dive sessions with app groups
§ Use provided base images
§ Enable Spack in container images
§ Tuned & supported by facilities via HI

§ Leverage DOE Gitlab Continuous Integration mechanisms
§  Integrate containers into current CI plan

18

0.900

0.950

1.000

1.050

1.100

1.150

1.200

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

0 2 4 6 8 10 12 14 16 18 20

Co
nt

ai
ne

r
Sp

ee
du

p

M
ea

n
W

al
l T

im
e

(s
ec

.)

Nodes

Nalu - Container vs. Native - Strong Scaling

Native Container Ratio

Agelastos, A, Younge, A et. al, (U) Quantifying Metrics to Evaluate Containers for Deployment and Usage of NNSA Production Applications, NECDC 2018

Nalu: A generalized unstructured massively parallel
low Mach CFD flow code designed to support
energy applications of interest

SNL ATDM Mission App

Points:
•  Supporting SPARC containerized

build & deployment
•  Deployed on Sandia CTS-1
•  Near-native performance using a

container
•  Testing HIFiRE-1 Experiment

(MacLean et al. 2008)

Emerging workloads on HPC with Containers

§ Support merging AI/ML/DL frameworks on HPC
§ Containers may be useful to adapt ML software to HPC
§ Already supported and heavily utilized in industry

§ Extreme-scale Scientific Software Stack (E4S)
§  Includes TensorFlow & Pytorch in container image

§ Working with DOE app teams to deploy custom ML tools in containers
§  Investigating scalability challenges and opportunities

Future Containerized CI Pipeline
§ As a developer I want to generate container builds from code pull requests so

that containers are used to test new code on target HPC machines.

Warning: Currently just Slideware

Training Education & Support

§ Containers involve new software deployment methodology
§ Training and education is needed to help ECP community to best utilize

new functionality
§ Technical Reports
§ Best Practices for building software using containers
§ Taxonomy survey to survey current state of the practice

§ Training sessions
§  International Supercomputing Conference 2019
§  IEEE/ACM Supercomputing 2019
§ ECP All-Hands Meeting

§ Provide single source of knowledge for groups interested in containers

Conclusion

§ Demonstrated value of container models in HPC
§ Deployments in testbeds to production HPC
§  Initial performance is promising
§ Modern DevOps approach with containers
§ Deployed on CTS systems

§ ECP Supercontainers Project
§ Enable containers Exascale
§ Embrace software diversity while insuring interoperability
§ Simplify HPC applciation deployment

§ Containers can increase software flexibility in HPC

Acknowledgements:
Kevin Pedretti (1423)
Anthony Agelastos (9326)
Si Hammond (1422)
Doug Pase (9326)
Aron Warren (9327)
Stephen Olivier (1423)
Justin Lamb (9326)
Erik Illescas (9327)
Ron Brightwell (1423)

Collaborators:
Shane Canon (LBNL/NERSC)
Todd Gamblin (LLNL)
Reid Priedhorsky (LANL)
Sameer Shende (Oregon)

CANOPIE-HPC WORKSHOP

Containers and New Orchestration Paradigms for
Isolated Environments in HPC

canopie-hpc.org

§  In coordination with Supercomputing 2019 (SC19) in Denver
§ Proceedings published in IEEE TCHPC
§ Submission Deadline: Monday, September 2nd, 2019
§ Conference Date: Monday, November 18th, 2019
§ SC19 workshop dedicated to containers & software environments

Thanks!
ajyoung@sandia.gov

Want to learn more about containers?
At tend the Conta iner Tu to r ia l @ SC19

Interested in helping & col laborat ing?
Studen ts , Pos tdocs , Co l labora to rs…

Backup Slides

THE WORLD’S FIRST PETASCALE ARM SUPERCOMPUTER

2.3 PFLOPs peak
>5000 TX2 ARM CPUs, ~150k cores
885 TB/s memory bandwidth peak

332 TB memory
1.2 MW

•  ATSE – Advanced Tri-lab Software Environment
•  Supports Singularity container runtime
•  Building ATSE container images
•  Developing Pytorch ARM containers

