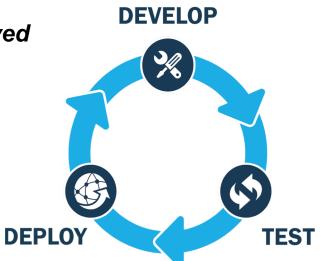

ECP Continuous Integration and Software Deployment

WBS 2.4.4.01 Software Integration

CS workshop

ECP Project: Software Deployment at Facilities Portfolio Context 2.4.4.01 – Software Integration


The Software Integration effort was established to bridge the ECP ST software development effort with the Exascale hardware and software environments deployed at the Facilities.

• **Continuous Integration (CI)** - Provide the ability to continuously test AD/ST software on facility hardware resources with software environments established at the Facility.

Key for software development teams targeting systems being deployed agile feedback loop is key for development

• **Software Deployment (SD)** - Establish integrated software packaging, testing, and deployment options that increase the compatibility and quality allowing ease of software deployment.

Integrated deployment of software packages considering dependencies and capability packaging

Security poses challenges for automation at large, multi-user HPC centers.

1. Difficult to run persistent services (like CI systems)

- HPC workloads are mostly batch jobs; have a fixed time limit
- Persistent services are difficult to deploy due to data security requirements
- Batch jobs typically have a fixed time limit, but HPC centers built around batch.

2. CI-like automation requires running arbitrary code

- Often in response to *external* repository check-ins
- How do we know who ran the code?
- How do we trust users, and who do we blame if it the code is malicious?
- 2-factor authentication prevents automated ingress from outside

3. All tasks at most HPC centers need to run *as* some user

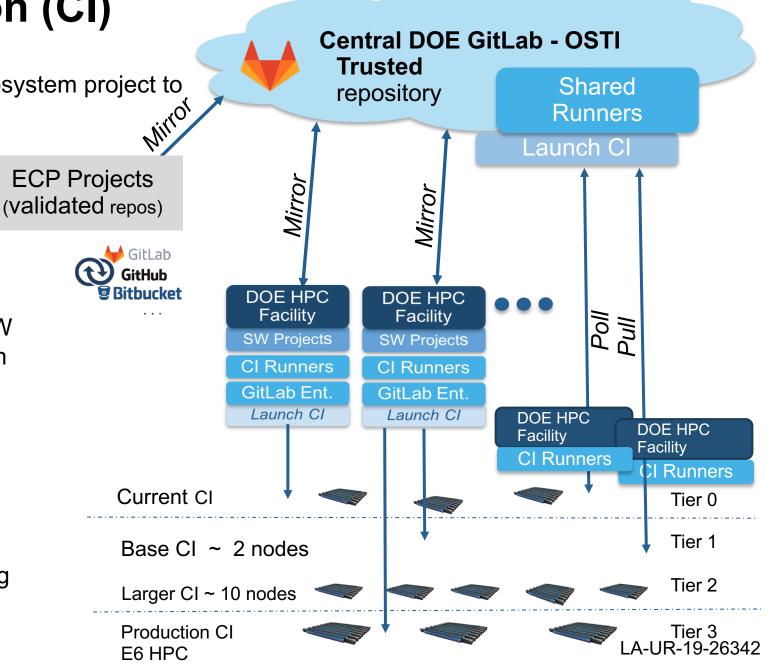
- Can't allow different users' jobs to share data.
- Need isolation between jobs run by user A and jobs run by user B
- Can't have unauthenticated services listening on arbitrary ports

Continuous Integration (CI)

CI Infrastructure /Implementation

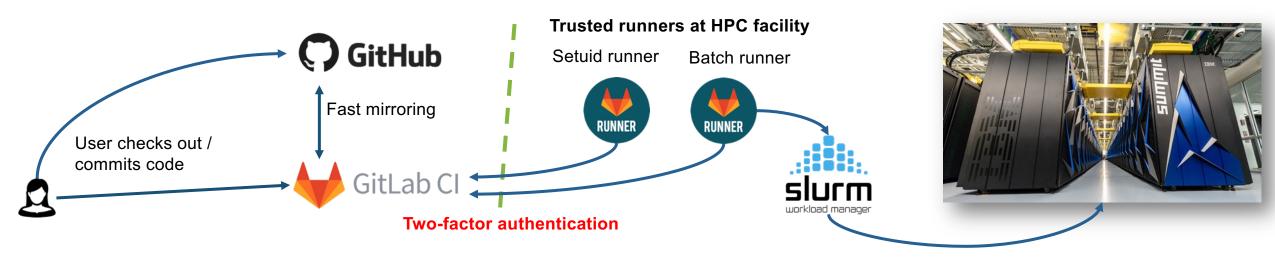
Collaboration with ECP ST software ecosystem project to define and implement

GitLab Enhancements:


- Setuid and batch submission
- Internal and cross site account mapping

OSTI:

- Provide central GitLab for CI and SW deployment with cross site validation
- Support account authentication

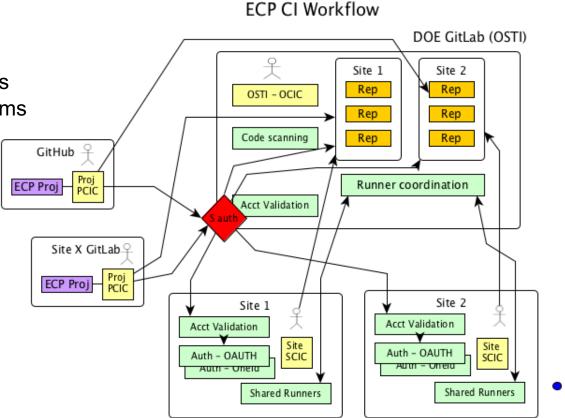

Facilities:

- Improved internal site GitLab capabilities
- Support account authentication
- Engaging with ECP AD and ST project teams to support on-boarding

Through ECP, we are working with Onyx Point to deliver continuous integration for HPC centers

- CI at HPC centers is notoriously difficult
 - Security concerns prevent most CI tools from being run by staff or by users
 - HPC centers really need to deploy trusted CI services for this to work
- We are developing a secure CI system for HPC centers:
 - Setuid runners (run CI jobs as users); Batch integration (similar, but parallel jobs); multi-center runner support
- Onyx Point will upstream this support into GitLab CI
 - Initial rollout in FY19 at ECP labs: ANL, ORNL, NERSC, LLNL, LANL, SNL
 - Upstream GitLab features can be used by anyone!

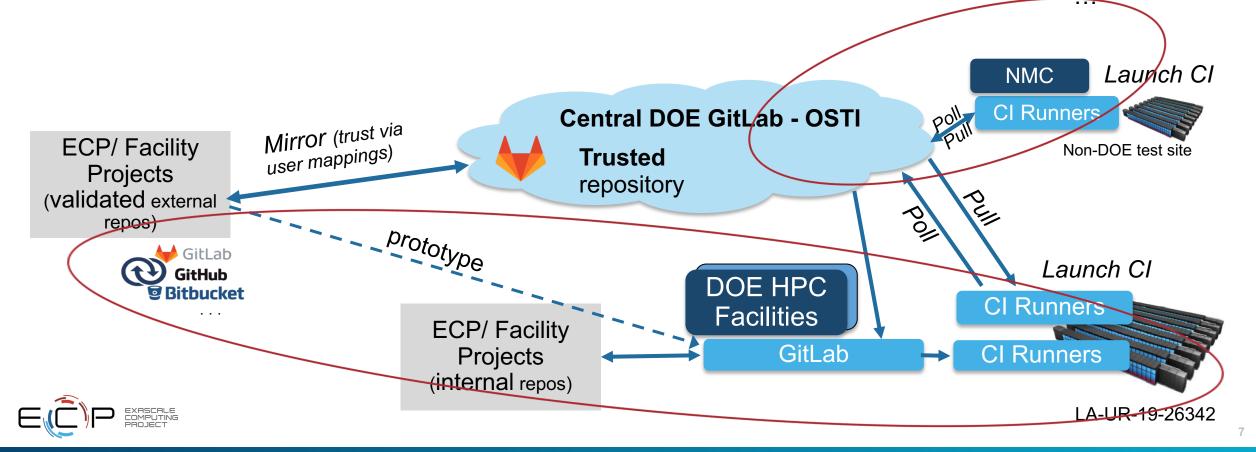
CI FY19 Implementation Strategy


Central DOE GitLab – OSTI. In-Place

- Installed and support GitLab Instance (premium license)
- Process to establish ECP user accounts (through site authentication)
- Process to establish project repositories for mirroring (through site groups)
- Process to register site federated runners (for machines at sites)

Site Integration – In-Process

- Internal CI (based on internal GitLab instance)
 - Projects being integrated to test/production systems
 - Security review for runner integration to HPC systems
- Establish Authentication endpoints
 - NERSC (Shibboleth) In-process
 - NNSA labs (OneID) July
 - OLCF (Oauth) August
 - ALCF (Oauth) August
- Process for project integration and establishment of OSTI repository
 - User account validation with sites

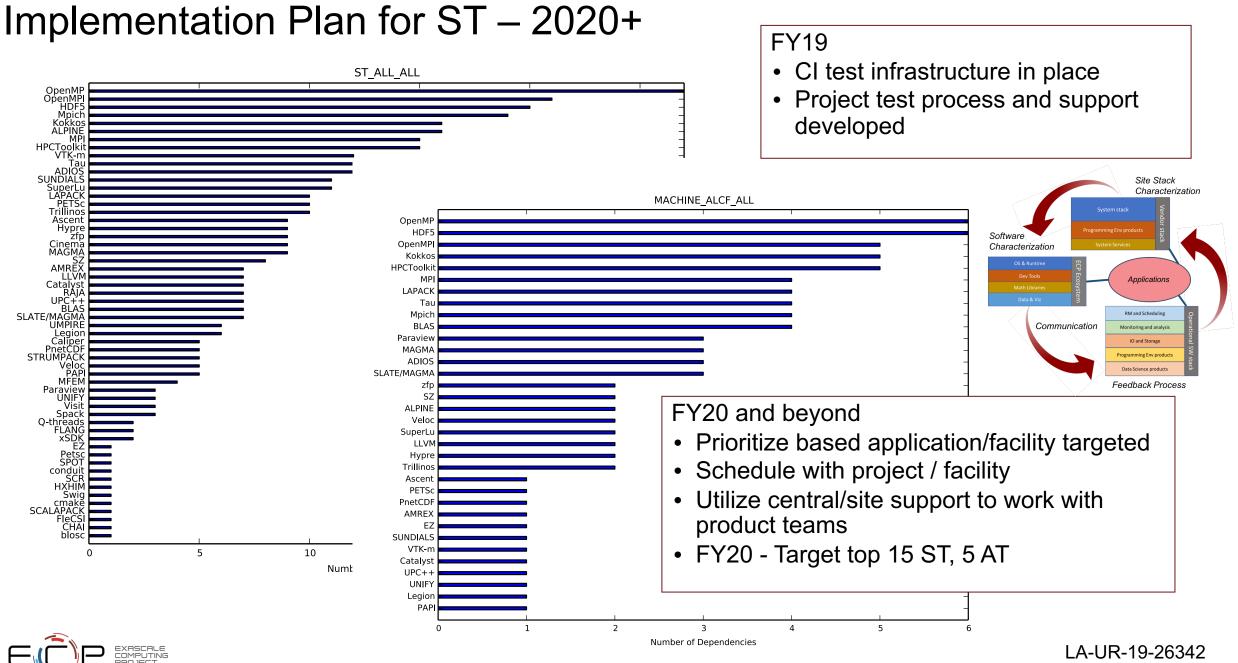

FY19 - capability development year.

Planned model for ECP CI

- Projects can keep their projects hosted elsewhere, and use mirroring to DOE GitLab repo (future)
- Facilities can also use the same model with an internal GitLab instance (current)
 - Can also mirror projects from DOE GitLab for internal CI testing capability
- Facilities have runners (HPC resources) polling for changes in a trusted location (GitLab)
- CI jobs launched via batch (exact policy TBD), or possibly on login nodes as-user

CI Testing Tiers – HPC Resources

	Testing Tier	Description	Notes
	Tier 0	 What AD/ST projects do now Existing CI Regression tests (no CI) 	 May include GitHub/ Travis - internet cron job based regression on misc. hardware
CI Cross-Site Targeting	Tier 1	 Base ECP CI - Build and Run resources Possible 2 build and 2 run nodes Build and Smoke tests Run multiple builds on resource unit / Integration tests Cross-site CI target 	 What is ratio of build to test resources? Work with AD and ST teams to support their needs Possible to allocate from other HPC resources with separate scheduling policy
CI Cross-Site Facilitating	Tier 2	 Facility test resource (~10 + nodes) In security enclave – site dependent Larger scale tests Facility approval for projects 	 Facility managed and may want to approve projects Possible production security constraints
	Tier 3	 Production machines Need allocation Production job rules Scale tests 	 Facility managed and may want to approve projects Production security constraints


State of Site Internal CI Deployments and Integration at DOE HPC Facilities

Facility	CI Resources	Teams/Products Integrating into CI
OLCF	Internal Open science Gitlab Runners - HPC cluster Ascent (summit like)	ECP-Copa/cabana, ECP-Proxy, FleCSI
ALCF	Internal GitLab server VM Runners – HPC systems Theta, lota	Argo-AML, Datalib/Darshan, ECP-Proxy, PETSc, NWChem, LLVM
NERSC	Internal GitLab server VM Runners - HPC systems Edison/Cori	HDF5, ECP-Proxy
LLNL	Internal Gitlab server (accessible to LLNL HPC users) Runners – Quartz, butte (P9 cluster)	Spack, RAJA, CHAI, Umpire, SAMRAI, RADIUSS, UnifyCR, VeloC, Ascent
LANL	Internal GitLab CCS Runners - HPC test system Darwin	FleCSI/Legion, EAP, ECP-Proxy, Adios

State of Cross-Site CI Integration and testing across DOE HPC Facilities

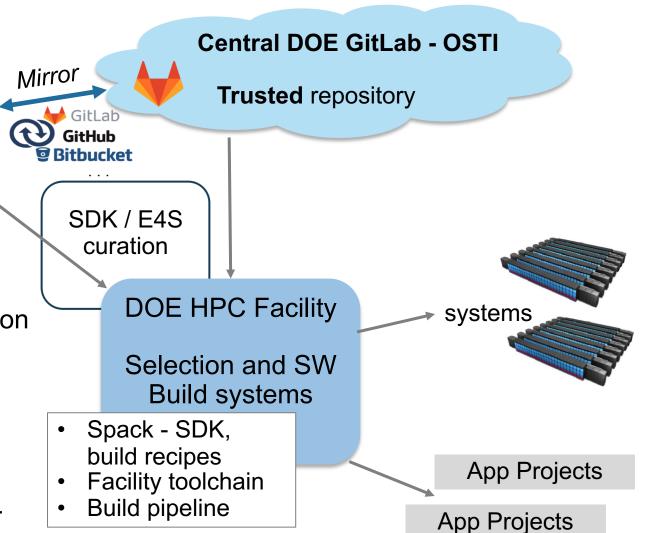
- Prototype mode – working through workflow

Facility	CI Resources	Teams/Products Integrating into CI
NMC	DOE GitLab - OSTI Runners – HPC CI test system – P9	FleCSI HDF5, ECP-Proxy, Dyninst, Adios
NERSC	DOE GitLab - OSTI Runners – HPC systems Edison/Cori	HDF5, ECP-Proxy, Dyninst, Adios

ECP Software Integration and Deployment **SW Deployment Architecture**

ECP/ Facility

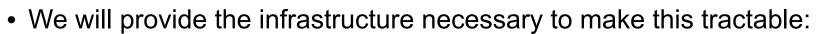
SW Projects

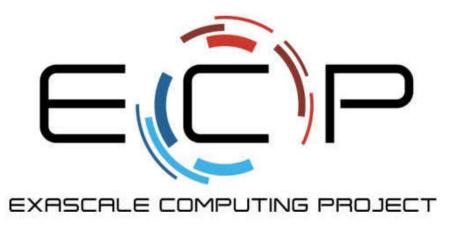

(validated external

repos)

In partnership with the ST software ecosystem project to further develop Spack/ SDKs, leverage software build pipelines, and assess container deployment.

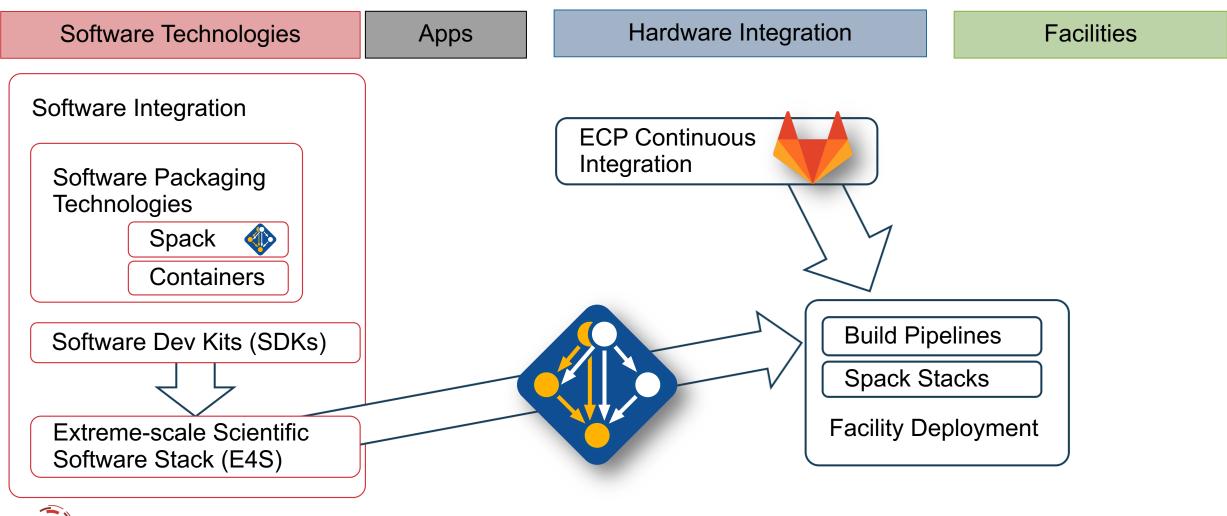
In-Process


- Establish efficient software build environments (build pipelines) that facilitate testing and deployment of software to production and user environments. Use CI processes.
- Spack software packaging
 - Broader Spack relationships for ease of SDK packaging and Facility deployment. xSDK being implemented
 - Spack integration into ST/ Facility environments.



Spack is the delivery platform for the ECP software stack

- U.S. Exascale Computing Project (ECP) will release software through Spack
- Software in ECP stack needs to run on ECP platforms, testbeds, clusters, laptops
 - Each new environment requires effort.
- ECP asks us to build a robust, reliable, and easy-to-use software stack



- 1. A dependency model that can handle HPC software
- 2. A hub for coordinated software releases (like xSDK)
- 3. Build and test automation for large packages across facility
- 4. Hosted binary and source software distributions for *all* ECP HPC platforms

There are many activities around Spack within ECP

Software Deployment in ECP Includes Many Efforts

Contributions to OSS projects

- ECP is building key infrastructure
- Working to bring more cloud-like services and automation to HPC
- Continuous Integration

Automating build and deployment

- Standardizing on a common package manager (Spack)
- Implementing build automation across HPC sites
- Trying to balance simple deployment with the complexity of the ecosystem

Spack contributors

Facility Integration

Towards regular releases

- Socializing a release process with researchers and scientists
- Bringing teams together to do better integration testing
- Regular ECP-wide releases

EXASCALE COMPUTING PROJECT

By the end of the ECP, the Software Deployment project will.

Have established a cross-site Continuous Integration testing infrastructure that:

- Provides for account authentication and access to CI test resources across multiple sites
- Provides unique and targeted HPC test resources to support software development teams
- Established a standard process across the DOE sites for software development testing

Have an established and updated process to understand software needs between applications and software technology projects and established a feedback process to facility software support teams

Software characterization / mapping and feedback processes

Have established a deployment process of ECP (and other) software via SDKs, Spack and an optimized build infrastructure

- Leveraging and building on software packaging tool infrastructure
- Establishing sharing and building on best practices across facilities
- Embracing new approaches to software deployment such as containers

Questions?

