
E4S: The Extreme-scale Scientific
Software Stack for Collaborative
Open Source Software

Michael A. Heroux, Sandia National Laboratories
Director of Software Technology, US Exascale Computing Project

The 2nd E4S Forum
September 24, 2020

2

Department of Energy (DOE) Roadmap to Exascale Systems
An impressive, productive lineup of accelerated node systems supporting DOE’s mission

To date, only
NVIDIA GPUs

Three different
types of
accelerators!

3

ECP Software Technology (ST) is one of three focus areas

Application
Development (AD)

Software
Technology (ST)

Hardware
and Integration (HI)

Performant mission and science applications @ scale
Aggressive RD&D

Project
Mission apps &

integrated S/W stack
Deployment to DOE

HPC Facilities
Hardware tech

advances

Integrated delivery of ECP
products on targeted systems at

leading DOE HPC facilities

6 US HPC vendors focused on
exascale node and system

design; application integration
and software deployment to

facilities

Deliver expanded and vertically
integrated software stack to

achieve full potential of exascale
computing

70 unique software products
spanning programming models
and run times, math libraries,

data and visualization

Develop and enhance the
predictive capability of

applications critical to the DOE

24 applications including
national security, to energy, earth

systems, economic security,
materials, and data

ECP ST has six technical areas

Programming
Models & Runtimes
•Enhance and get
ready for exascale the
widely used MPI and
OpenMP
programming models
(hybrid programming
models, deep
memory copies)

•Development of
performance
portability tools (e.g.
Kokkos and Raja)

•Support alternate
models for potential
benefits and risk
mitigation: PGAS
(UPC++/GASNet)
,task-based models
(Legion, PaRSEC)

•Libraries for deep
memory hierarchy
and power
management

10-8

10-4

100

104

 0 100 200 300 400 500 600 700 800 900
R

e
s
id

u
a
l

Iteration

PAPI SDE Recorder: Residual per Iteration (662-bus: 662 x 662 with 2,474 nonzeros)

CG
CGS

BICGSTAB

Development
Tools

• Continued,
multifaceted
capabilities in
portable, open-
source LLVM
compiler
ecosystem to
support expected
ECP
architectures,
including support
for F18

• Performance
analysis tools that
accommodate
new
architectures,
programming
models, e.g.,
PAPI, Tau

Math Libraries
•Linear algebra,
iterative linear
solvers, direct linear
solvers, integrators
and nonlinear
solvers,
optimization, FFTs,
etc

•Performance on new
node architectures;
extreme strong
scalability

•Advanced
algorithms for multi-
physics, multiscale
simulation and
outer-loop analysis

•Increasing quality,
interoperability,
complementarity of
math libraries

Data and
Visualization

• I/O via the HDF5
API

• Insightful,
memory-efficient
in-situ
visualization and
analysis – Data
reduction via
scientific data
compression

• Checkpoint
restart

Software
Ecosystem

•Develop features in
Spack necessary to
support all ST
products in E4S, and
the AD projects that
adopt it

•Development of
Spack stacks for
reproducible turnkey
deployment of large
collections of
software

•Optimization and
interoperability of
containers on HPC
systems

•Regular E4S
releases of the ST
software stack and
SDKs with regular
integration of new
ST products

NNSA ST
• Open source

NNSA Software
projects

• Projects that have
both mission role
and open science
role

• Major technical
areas: New
programming
abstractions,
math libraries,
data and viz
libraries

• Cover most ST
technology areas

• Subject to the
same planning,
reporting and
review processes

We work on products and applications needed now and into the future

Example Products Engagement

MPI – Backbone of HPC apps Explore/develop MPICH and OpenMPI new features & standards.

OpenMP/OpenACC –On-node parallelism Explore/develop new features and standards.

Performance Portability Libs: Kokkos, RAJA Lightweight APIs for compile-time polymorphisms.

LLVM/Vendor compilers Injecting HPC features, testing/feedback to vendors.

Perf Tools - PAPI, TAU, HPCToolkit Explore/develop new features.

Math Libraries: BLAS, sparse solvers, etc. Scalable algorithms and software, critical enabling technologies.

IO: HDF5, MPI-IO, ADIOS Standard and next-gen IO, leveraging non-volatile storage.

Viz/Data Analysis ParaView-related product development, node concurrency.

Key themes:
• Exploration/development of new algorithms/software for emerging HPC capabilities:
• High-concurrency node architectures and advanced memory & storage technologies.
• Enabling access and use via standard APIs.
Software categories:
• The next generation of well-known and widely used HPC products (e.g., MPICH, OpenMPI, PETSc)
• Some lesser used but known products that address key new requirements (e.g., Kokkos, RAJA, Spack)
• New products that enable exploration of emerging HPC requirements (e.g., SICM, zfp, UnifyCR)

The Extreme-Scale
Scientific Software
Stack (E4S):

A collaborative HPC
Linux Ecosystem

7

Delivering an open, hierarchical software ecosystem

ST
Products

Source: ECP L4 teams; Non-ECP Developers; Standards Groups
Delivery: Apps directly; spack; vendor stack; facility stack

SDKs

Source: ECP SDK teams; Non-ECP Products (policy compliant,
spackified)

Delivery: Apps directly; spack install sdk; future: vendor/facility

E4S

Source: ECP E4S team; Non-ECP Products (all dependencies)
Delivery: spack install e4s; containers; CI Testing

Levels of Integration Product Source and Delivery

• Group similar products
• Make interoperable
• Assure policy compliant
• Include external products

• Build all SDKs
• Build complete stack
• Containerize binaries

• Standard workflow
• Existed before ECP

ECP ST Open Product Integration Architecture

ECP ST Individual Products

8

Delivering an open, hierarchical software ecosystem

ST
Products

Source: ECP L4 teams; Non-ECP Developers; Standards Groups
Delivery: Apps directly; spack; vendor stack; facility stack

SDKs

Source: ECP SDK teams; Non-ECP Products (policy compliant,
spackified)

Delivery: Apps directly; spack install sdk; future: vendor/facility

E4S

Source: ECP E4S team; Non-ECP Products (all dependencies)
Delivery: spack install e4s; containers; CI Testing

Levels of Integration Product Source and Delivery

• Group similar products
• Make interoperable
• Assure policy compliant
• Include external products

• Build all SDKs
• Build complete stack
• Containerize binaries

• Standard workflow
• Existed before ECP

ECP ST Open Product Integration Architecture

ECP ST Individual Products

9

E4S Components
• E4S is a curated release of ECP ST products based on Spack [http://spack.io].
• E4S Spack cache to support bare-metal installs at facilities and custom container builds:

– x86_64, ppc64le, and aarch64
• Container images on DockerHub and E4S website of pre-built binaries of ECP ST products.
• Base images and full featured containers (GPU support).
• GitHub recipes for creating custom images from base images.
• e4s-cl for container launch and for replacing MPI in application with system MPI libraries.
• Validation test suite on GitHub provides automated build and run tests.
• Automates build process via GitLab Continuous Integration to ensure packages can be built.
• E4S Doc Portal aggregates and summarizes documentation and metadata by raking product repos.
• E4S VirtualBox image with support for Docker, Shifter, Singularity, and Charliecloud runtimes.
• AWS image to deploy E4S on EC2.

https://e4s.io

10

Extreme-scale Scientific Software Stack (E4S)

•E4S: A Spack-based distribution of ECP ST and related
and dependent software tested for interoperability and
portability to multiple architectures

•Provides distinction between SDK usability / general
quality / community and deployment / testing goals

•Will leverage and enhance SDK interoperability thrust

•Oct 2018: E4S 0.1 - 24 full, 24 partial release products
• Jan 2019: E4S 0.2 - 37 full, 10 partial release products
•Nov 2019: E4S 1.0 - 50 full, 5 partial release products
• Feb 2020: E4S 1.1 - 50 full,10 partial release products

e4s.io
Lead: Sameer Shende

(U Oregon)

11

E4S 1.1 Full Release: 50 ECP Packages and all dependencies
• Adios
• AML
• Argobots
• Bolt
• Caliper
• Darshan
• Dyninst
• Faodel
• Flecsi
• Gasnet
• GEOPM
• Gotcha
• HDF5
• HPCToolkit
• Hypre

• Kokkos
• Legion
• Libnrm
• Libquo
• Magma
• Mercury
• MFEM
• MPICH
• MPIFileUtils
• Ninja
• OpenMPI
• PAPI
• Papyrus
• Parallel

netCDF

• PDT
• PETSc
• Qthreads
• Raja
• Rempi
• SCR
• Spack
• Strumpack
• Sundials
• SuperLU
• SZ
• Tasmanian
• TAU
• Trilinos
• Turbine

• Umpire
• UnifyFS
• UPC++ Veloc
• Zfp

Packages installed using Spack

All ST products
will be released

through E4S

Partial (in-progress) Release: ASCENT, Catalyst, Flang, libEnsemble, LLVM, Visit, others

E4S Software
Development Kits (SDKs):

Collaborative community
development of
complementary software
capabilities

13

Software Development Kits (SDKs): Key delivery vehicle for ECP
A collection of related software products (packages) where coordination across package teams improves usability
and practices, and foster community growth among teams that develop similar and complementary capabilities

• Domain scope
Collection makes functional sense

• Interaction model
How packages interact; compatible, complementary, interoperable

• Community policies
Value statements; serve as criteria for membership

• Meta-infrastructure
Invokes build of all packages (Spack), shared test suites

• Coordinated plans
Inter-package planning. Augments autonomous package planning

• Community outreach
Coordinated, combined tutorials, documentation, best practices

ECP ST SDKs: Grouping similar products
for collaboration & usability

Programming Models &
Runtimes Core
Tools & Technologies
Compilers & Support
Math Libraries (xSDK)
Viz Analysis and Reduction
Data mgmt., I/O Services & Checkpoint/
Restart
“Unity in essentials, otherwise diversity”

14

xSDK version 0.5: November 2019
(21 math libs, 2 domain-specific packages)
• AMReX
• ButterflyPACK
• DTK
• deal.ii
• Ginkgo
• hypre
• libEnsemble
• MAGMA
• MFEM
• Omega_h

• PETSc/TAO
• PHIST
• PLASMA
• preCICE
• PUMI
• SLEPc
• STRUMPACK
• SUNDIALS
• SuperLU
• Tasmanian

• Trilinos
• Pflotran
• Alquimia

Notes:

• Growth:
§ 5 in release 0.1.
§ 7 in 0.2
§ 9 in 0.3
§ 19 in 0.4
§ 23 in 0.5

• You do not need to build all packages.
• We build and test all packages.
• Any subset is guaranteed to build if using the

same build parameters, platforms.
• Similar builds should work or require less effort

for success.

15

SDK “Horizontal” Grouping:
Adressing “Dependency Hell”

Horizonal (vs Vertical) Coupling
–Common substrate
–Similar function and purpose
•e.g., compiler frameworks, math libraries

–Potential benefit from common Community Policies
•Best practices in software design and development and customer support

–Used together, but not in the long vertical dependency chain sense
–Support for (and design of) common interfaces
•Commonly an aspiration, not yet reality

PETSc Trilinos

SuperLU Version X SuperLU Version Y

Horizontal grouping:
• Assures X=Y.
• Protects against regressions.
• Transforms code coupling from

heroic effort to turnkey.

16

xSDK community policies
xSDK compatible package: Must satisfy
mandatory xSDK policies:
M1. Support xSDK community GNU Autoconf or CMake options.
M2. Provide a comprehensive test suite.
M3. Employ user-provided MPI communicator.
M4. Give best effort at portability to key architectures.
M5. Provide a documented, reliable way to contact the development team.
M6. Respect system resources and settings made by other previously called
packages.
M7. Come with an open source license.
M8. Provide a runtime API to return the current version number of the
software.
M9. Use a limited and well-defined symbol, macro, library, and include file
name space.
M10. Provide an accessible repository (not necessarily publicly available).
M11. Have no hardwired print or IO statements that cannot be turned off.
M12. For external dependencies, allow installing, building, and linking against
an outside copy of external software.
M13. Install headers and libraries under <prefix>/include/ and <prefix>/lib/.
M14. Be buildable using 64 bit pointers. 32 bit is optional.
M15. All xSDK compatibility changes should be sustainable.
M16. The package must support production-quality installation compatible
with the xSDK install tool and xSDK metapackage.

Also recommended policies, which currently are
encouraged but not required:

R1. Have a public repository.
R2. Possible to run test suite under valgrind in order to test for
memory corruption issues.
R3. Adopt and document consistent system for error
conditions/exceptions.
R4. Free all system resources it has acquired as soon as they
are no longer needed.
R5. Provide a mechanism to export ordered list of library
dependencies.
R6. Document versions of packages that it works with or
depends on, preferably in machine-readable form
R7. Have README, SUPPORT, LICENSE, and CHANGELOG
files in top directory.

xSDK member package: Must be an xSDK-compatible
package, and it uses or can be used by another
package in the xSDK, and the connecting interface is
regularly tested for regressions.

We welcome feedback. What policies
make sense for your software?

https://xsdk.info/policies

BSSw blog article:
P. Luszczek and U. Yang, Aug 2019,

https://bssw.io/blog_posts/building-community-through-software-policies

https://xsdk.info/policies
https://bssw.io/blog_posts/building-community-through-software-policies

ECP ST SDKs will span all technology areas

zfp

VisIt

ASCENT

Cinema

Catalyst

VTK-m

SZ

ParaView

Visualization Analysis
and Reduction (9)

ROVER

xSDK (16)

MAGMA

DTK

Tasmanian

TuckerMPI

SUNDIALS

PETSc/TAO

libEnsemble

STRUMPACK

SuperLU

ForTrilinos

SLATE

MFEM

Kokkoskernels

Trilinos

hypre

FleSCI

PMR Core (17)

UPC++

MPICH

Open MPI

Umpire

AML

RAJA

CHAI

PaRSEC*

DARMA

GASNet-EX

Qthreads

BOLT

SICM

Legion

Kokkos (support)

QUO

Papyrus

Tools and
Technology (11)

PAPI

Program Database Toolkit

Search (random forests)

Siboka

C2C

Sonar

Dyninst Binary Tools

Gotcha

Caliper

TAU

HPCToolkit

Compilers
and Support (7)

OpenMP V & V

Flang/LLVM Fortran comp

LLVM

CHiLL autotuning comp

LLVM openMP comp

openarc

Kitsune

Data mgmt, I/O Services,
Checkpoint restart (12)

Parallel netCDF

ADIOS

Darshan

UnifyCR

VeloC

IOSS

HXHIM

ROMIO

Mercury (Mochi suite)

HDF5

SCR

FAODEL

Ecosystem/E4S
at-large (12)

BEE

FSEFI

Kitten Lightweight Kernel

COOLR

NRM

ArgoContainers

Spack

MarFS

GUFI

Intel GEOPM

mpiFileUtils

TriBITS

Tools

PMR

Data and Vis
Ecosystems and delivery

Math Libraries Legend

Motivation: Properly chosen cross-team interactions will build relationships that support interoperability, usability,
sustainability, quality, and productivity within ECP ST.
Action Plan: Identify product groupings where coordination across development teams will improve usability and
practices, and foster community growth among teams that develop similar and complementary capabilities.

18

E4S Community Candidate Policies V 1.0 Beta
• Spack-based Build and Installation

Each E4S member package supports a scriptable Spack build and production-quality installation in a way that is compatible with other E4S member packages in the same environment. When E4S build, test, or installation issues arise, there is
an expectation that teams will collaboratively resolve those issues.

• Minimal Validation Testing
Each E4S member package has at least one test that is executable through the E4S validation test suite (https://github.com/E4S-Project/testsuite). This will be a post-installation test that validates the usability of the package. The E4S validation
test suite provides basic confidence that a user can compile, install and run every E4S member package. The E4S team can actively participate in the addition of new packages to the suite upon request.

• Sustainability

All E4S compatibility changes will be sustainable in that the changes go into the regular development and release versions of the package and should not be in a private release/branch that is provided only for E4S releases.

• Product Metadata
Each E4S member package team will provide key product information via metadata that is organized in the E4S DocPortal format. Depending on the filenames where the metadata is located, this may require minimal setup.

• Public Repository
Each E4S member package will have a public repository, for example at GitHub or Bitbucket, where the development version of the package is available and pull requests can be submitted.

• Imported Software

If an E4S member package imports software that is externally developed and maintained, then it must allow installing, building, and linking against a functionally equivalent outside copy of that software. Acceptable ways to accomplish this
include (1) forsaking the internal copied version and using an externally-provided implementation or (2) changing the file names and namespaces of all global symbols to allow the internal copy and the external copy to coexist in the same
downstream libraries and programs.

• Error Handling
Each E4S member package will adopt and document a consistent system for signifying error conditions as appropriate for the language and application. For e.g., returning an error condition or throwing an exception. In the case of a command
line tool, it should return a sensible exit status on success/failure, so the package can be safely run from within a script.

• Test Suite

Each E4S member package will provide a test suite that does not require special system privileges or the purchase of commercial software. This test suite should grow in its comprehensiveness over time. That is, new
and modified features should be included in the suite.

https://github.com/E4S-Project/testsuite
https://e4s-project.github.io/DocPortal.html
https://github.com/E4S-Project/E4S-Documenter/blob/master/README.md

19

E4S/SDK Policy Initiative Status

• Community policies are important for several reasons:
– Commitment to quality
– Membership criteria for the future
– Community discussion

• Each SDK community developing policies like Math Libs (xSDK).

• Policies common to all SDKs will be promoted to E4S level

• Policies will determine:
– Quality label
– Membership in E4S and the SDKs

• Version 1.0 of policies due by end of 2020

E4S DocPortal

A Single Portal with
Redirect to Product
Documentation

Product
Documentation
Challenges:
User
Perspective

Finding info for
specific product

What it does
License
Support
Contact info
More …

Finding new products What can solve my problem

Trusting accuracy of
information

Up to date
Complete

Hierarchical Summary to deep dive

21

Product
Documentation
Challenges:
Developer
Perspective

Efficient and Effective
generation and maintenance

Getting noticed by new users

Conveying summary
information and details

22

E4S DocPortal
Requirements

Provide a single online location
for accurate product descriptions
for ECP software products.

Derived
requirements

Sustainable: Must be integrated into
software team workflows.

Incremental: Must build on community
approaches to providing this information.

Extensible: Must be usable by any open
source software team.

23

E4S Documentation Portal Strategy

All content resides in product
repositories
Use open source community approach of specially-
name files in software repositories.

Adopt commonly used file names when available.

ID new information items not already being requested.

Documentation portal provides single
point of access
Web-based raking tool capture information from
product repositories and present in summary form.

Aggregates and summarizes documentation and
metadata for E4S products

Regularly updates information directly from product
repositories

Location: https://e4s-project.github.io/DocPortal.html

24

https://e4s-project.github.io/DocPortal.html

E4S
DocPortal

Status

• Completed DocPortal Prototype and Design Document

• Reviewed prototype/design with Facilities and ST
developers

• Version 1.0 available now:
• https://e4s-project.github.io/DocPortal.html
• Available from e4s.io

• Next steps:
• Work with ECP ST teams to improve amount and

quality of raked content
• Develop policy and acceptance criteria for E4S

DocPortal membership

25

https://e4s-project.github.io/DocPortal.html
https://e4s.io/

26

E4S DocPortal

• Summary Info
– Name
– Functional Area
– Description
– License

• Searchable

• Sortable

https://e4s-project.github.io/DocPortal.html

https://e4s-project.github.io/DocPortal.html

27

Goal: All E4S Product Documentation Accessible from single portal on E4S.io
(Working Mock Webpage below)

https://e4s-project.github.io/DocPortal.html

https://e4s-project.github.io/DocPortal.html

28

Q: What do we need for adding a product to the DocPortal?
A: A repo URL + up-to-date meta-data files

29

E4S DocPortal Initiative Status: Fall 2020

• Completed DocPortal Prototype and Design Document

• Reviewed prototype/design with Facilities and ST developers

• Version 1.0 available now: https://e4s-project.github.io/DocPortal.html

• Next steps:
– Work with ECP ST teams to improve amount and quality of raked content
– Develop policy and acceptance criteria for E4S DocPortal membership

https://e4s-project.github.io/DocPortal.html

How to Access E4S Software

From Source and Many Other
Ways

31

E4S v1.1 Access

• From e4s-project.github.io
– Source via Spack
– E4S v1.1 GPU image
– Docker, Singularity (ppc64le, x86_64) …

• E4S v1.1 Release Available at DockerHub
– 40+ ECP ST Products
– Support for GPUs

•NVIDIA
(CUDA 10.1.243)
•ppc64le and x86_64

• Visit https://e4s.io for more details

https://e4s.io/

Spack

33

Spack

• E4S uses the Spack package manager for software delivery

• Spack provides the ability to specify versions of software packages that are and are not
interoperable.

• Spack is a build layer for not only E4S software, but also a large collection of software tools
and libraries outside of ECP ST.

• Spack supports achieving and maintaining interoperability between ST software packages.

34

Scientific software is becoming extremely complex

r-rminer

r

r-adabag

r-mass

r-lattice

r-nnet

r-rpart

r-cubist

r-e1071

r-glmnet

r-kernlab

r-kknn

r-mda

r-party

r-plotrix

r-pls

r-randomforest

r-xgboost

bzip2

cairo

freetype

zlib

glib

ncurses

pcre readline

curl

icu4c

jdk
libjpeg-turbo

libtiff

pango

tcltk

fontconfig

pkgconf

libpng
pixman

font-util

gperf

libxml2

util-macros

xz

gettext

libffi

perl

python

tar

gdbm

openssl

sqlite
cmake

nasm

gobject-introspection

harfbuzz

bison

flex

sed

m4 libsigsegv

help2man

libx11 inputproto

kbproto

libxcb

xproto

xextproto

xtrans
libpthread-stubs

libxau

libxdmcp

xcb-proto

r-caret

r-mlbench

r-car

r-nlme

r-foreach

r-ggplot2
r-plyr

r-reshape2

r-modelmetrics

r-mgcv

r-pbkrtest

r-quantreg

r-matrix

r-lme4

r-minqa

r-rcpp

r-nloptr

r-rcppeigen

r-testthat

r-crayon

r-digest

r-magrittr

r-praise

r-r6

r-matrixmodels

r-sparsem

r-codetools

r-iterators

r-gtable

r-lazyeval

r-scales

r-tibble

r-stringr

r-stringi

r-dichromat

r-labeling

r-munsell

r-rcolorbrewer

r-viridislite

r-colorspace

r-assertthat

r-rlang

r-class

r-igraph

gmp

r-irlba

r-pkgconfig autoconf

automake

libtool

r-coin

r-modeltools
r-mvtnorm

r-sandwich

r-zoo

r-survival

r-strucchange

r-multcomp r-th-data

r-data-table

R Miner: R Data Mining Library

dealii

adol-c

arpack-ng

cmake

zlib

openblas

openmpi

assimp
boost

gmsh oce

intel-tbb

gsl

hdf5

metis

muparser

nanoflann

netcdfnetcdf-cxx

netlib-scalapack

p4est

petsc

slepc

suite-sparse

sundials

trilinos

autoconf

m4

automake

libtool

perl

libsigsegv

gdbm

readline

ncurses

pkgconf

openssl

hwloc libxml2
xz

bzip2

gmp

netgen

tetgen

hypre

parmetis

python

superlu-dist
sqlite

glm

matio

mumps

dealii: C++ Finite Element Library

nalu

cmake

openmpi

trilinos

yaml-cpp
ncurses

openssl

pkgconf

zlib

hwloc libxml2 xz

boost

glm

hdf5

matio

metis

mumps

netlib-scalapack

openblas

netcdf

parallel-netcdf

parmetis

suite-sparse

superlu

bzip2

m4 libsigsegv

Nalu: Generalized Unstructured Massively Parallel Low Mach Flow

E4S Spack Build Cache and
Container Build Pipeline

36

E4S: Spack Build Cache at U. Oregon

• https://oaciss.uoregon.edu/e4s/inventory.html

• 10,000+ binaries
• S3 mirror
• No need to build
from source code!

37

WDMApp: Speeding up bare-metal installs using E4S build cache

• https://wdmapp.readthedocs.io/en/latest/machines/rhea.html

• E4S Spack build cache
• Adding E4S mirror
• WDMApp install speeds up!

Pantheon and E4S support end-to-end ECP examples

LA-UR-20-27327 9/29/20Los Alamos National Laboratory 38

Overview: The Exascale Computing Project (ECP) is a complex undertaking,
involving a myriad of technologies working together. An outstanding need is a
way to capture, curate, communicate and validate workflows that cross all of
these boundaries.

The Pantheon and E4S projects are collaborating to advance the integration and
testing of capabilities, and to promote understanding of the complex workflows
required by the ECP project. Utilizing a host of ECP technologies (spack, Ascent,
Cinema, among others), this collaboration brings curated workflows to the
fingertips of ECP researchers.

Contributions
- Curated end-to-end application/in-situ analysis examples can be run quickly by

anyone on Summit. (https://github.com/pantheonscience/ECP-E4S-Examples)

- Pantheon/E4S integration speeds up build/setup times over source builds due
to cached binaries (approx.10x speed up).

Instructions page for (top) Nyx, Ascent and
Cinema workflow repository, and (bottom)
Cloverleaf3d, Ascent, Cinema workflow.
These curated workflows use Pantheon,
E4S and spack to provide curated
workflows for ECP.

https://github.com/pantheonscience/ECP-E4S-Examples

39

E4S: Building on top of previous efforts

•E4S did not emerge from nothing

•Leveraging the work of many others

•HPC Linux: Work done at U. of Oregon, and at ParaTools, Inc

• IDEAS-Classic: xSDK – the original SDK continuing under ECP

•Spack – Pre-dates E4S

•All the useful open source software created by the scientific community

40

E4S Summary

What E4S is
• Extensible, open architecture software ecosystem

accepting contributions from US and international teams.

• Framework for collaborative open-source product
integration.

• A full collection if compatible software capabilities and

• A manifest of a la carte selectable software capabilities.

• Vehicle for delivering high-quality reusable software
products in collaboration with others.

• The conduit for future leading edge HPC software
targeting scalable next-generation computing platforms.

• A hierarchical software framework to enhance (via SDKs)
software interoperability and quality expectations.

What E4S is not

• A closed system taking contributions only from DOE
software development teams.

• A monolithic, take-it-or-leave-it software behemoth.

• A commercial product.

• A simple packaging of existing software.

41

Some E4S Collaboration Models

Approach Comments/Potential

Use E4S containers for tutorials and
webinars

Many ST technologies offer tutorial/webex forums to learn more; range from introductory to
advanced

Evaluate new capabilities using E4S
software products

Accelerator-enabled software stack (compilers, programming environments, tools, math libraries,
in situ), next-generation IO (HDF5, ADIOS, PNetCDF)

Install E4S A goal for us: Want to explore how to make this possible. Collaboration can help us improve our
product development and delivery.

Contribute to E4S and SDKs • E4S and SDKs are open architectures enabling light-weight integration of similar products.
• Contributions already exist from NSF and European funded projects
• Talk with us about contributing your product to the DocPortal
• Assess your product against our community policies

Overall Full collaborative interactions benefit everyone.

42

E4S/SDK Summary

• E4S/SDK Software: Curated release of complete production-quality HPC Linux software stack:
– Latest ECP-developed features for 50+ products.
– Ported and validated regularly on all common and emerging HPC platforms.
– Single DocPortal access to all product documentation.
– Collaborative development communities around SDKs to build culture of quality.
– Policies for SW and user experience quality.
– Containers, build caches for (dramatic) reduction in build time and complexity.

• E4S: A new member of the HPC ecosystem:
– A managed portfolio of HPC software teams and products.
– Enabling first-of-a-kind collaboration: vendors, facilities, US agencies, industry and internationally.
– Extensible to new domains: AI/ML.
– A new way of delivering reusable HPC software with ever-improving quality and functionality.

https://e4s.io

43

ECP Software Technology Capability
Assessment Report (CAR) Version 2.0

https://exascaleproject.org/wp-content/uploads/2020/02/ECP-ST-CAR-V20-1.pdf
All ECP Reports: https://www.exascaleproject.org/reports/

• Comprehensive document about ECP ST
structure, progress and planning

• Version 2.0:
– E4S/SDK details
– 2-page writeups for each product
– Released February 1, 2020

• Version 2.5:
– Refresh of 2-page writeups
– Foreshadowing of next ECP features in E4S
– Scheduled for November 15, 2020

https://exascaleproject.org/wp-content/uploads/2020/02/ECP-ST-CAR-V20-1.pdf
https://www.exascaleproject.org/reports/

