
P R E S E N T E D B Y

Sandia National Laboratories is a multimission
laboratory managed and operated by National

Technology & Engineering Solutions of Sandia, LLC, a
wholly owned subsidiary of Honeywell International
Inc., for the U.S. Department of Energy’s National

Nuclear Security Administration under contract
DE-NA0003525.

Supercontainers in HPC

Andrew J. Younge
Sandia Nat ional Laborator ies

ajyoung@sandia.gov

E4S Forum – IEEE Cluster 2019

September 23rd, 2019 SAND2019-11335 C
Unclassified Unlimited Release

Motivation

§ DOE/NNSA and Sandia have long history of investment in HPC
§ Mission workloads computational requirements demand scale
§ Tightly coupled BSP simulation codes typically use MPI for communication
§ Many workload ensembles quickly expanding to ML/DL/AI

§ Public cloud computing is often prohibitive
§ Both in cost and security models

§ However, HPC is not traditionally as flexible as “the cloud”
§ Shared resource models
§ Static software environments
§ Not always best fit for emerging apps and workflows

§ What about Containers?
§ Can we support containers in HPC in the same way as industry?
§ Does this model fit for HPC and emerging workloads across DOE?
§ Can we adapt our programming environments into container images?

What is a Container?

§ Unit of software which packages up all code and dependencies
necessary to execute single process or task

§ Encapsulates the entire software ecosystem (minus the kernel)
§ OS-level virtualization mechanism
§ Different than Virtual Machines
§ Think ”chroot” on steroids, BSD Jails
§ Dependent on host OS, which is (usually) Linux
§ Uses namespaces (user, mount, pid, etc)

§ Docker is the leading container runtime
§ Used extensively in industry/cloud enterprise
§ Foundation for Kubernetes and Google cloud
§ Supported in Amazon AWS cloud

Initial HPC Container Vision

§ Support HPC software development and testing on laptops/workstations
§ Create working container builds that can run on supercomputers
§ Minimize dev time on supercomputers

§ Developers specify how to build the environment AND the application
§ Users just import a container and run on target platform
§ Have many containers, but with different manifests for arch, compilers, etc.
§ Not bound to vendor and sysadmin software release cycles

§ Performance matters
§ Use mini-apps to “shake out” container implementations on HPC
§ Envision features to support future workflows (ML/DL/in-situ analytics)

Containers in HPC

§ BYOE - Bring-Your-Own-Environment
§ Developers define the operating environment and

system libraries in which their application runs

§ Composability
§ Developers have control over how their software

environment is composed of modular components
as container images

§ Enable reproducible environments that can
potentially span different architectures

§ Portability
§ Containers can be rebuilt, layered, or shared

across multiple different computing systems
§ Potentially from laptops to clouds to advanced

supercomputing resources

§ DevOps
§ Integrate with revision control systems like Git
§ Include build manifests and container images

using container registries

§ Overhead
§ HPC applications cannot incur significant overhead

from containers

§ Micro-Services
§ Micro-services container methodology does not

apply to current HPC workloads
§ 1 app/node with multiple processes or threads per

container

§ On-node Partitioning
§ On-node partitioning with cgroups unnecessary

§ Root Operation
§ Containers allow root-level access control to users
§ Root is a significant security risk for HPC facilities

§ Commodity Networking
§ Common network control mechanisms are built

around commodity networking (TCP/IP)
§ Supercomputers utilize custom interconnects w/ OS

kernel bypass operations

Wanted Features Conflicting Features

HPC Container Runtimes
§ Docker is not good fit for running HPC workloads
§ Building with Docker on my laptop is ok
§ Security issues, no HPC integration

§ Several different container options in HPC

§ All 3 HPC container runtimes are usable in HPC today
§ Each runtime offers different designs and OS mechanisms
§ Storage & mgmt of images
§ User, PID, Mount namespaces
§ Security models
§ OCI vs Docker vs Singularity images
§ Image signing, validation, registries, etc

ECP Supercontainers

§ Joint DOE effort - Sandia, LANL, LBNL, LLNL, U. of Oregon
§ Ensure container runtimes will be scalable, interoperable, and well integrated across DOE
§ Enable container deployments from laptops to Exascale
§ Assist ECP applications and facilities leverage containers most efficiently

§ Three-fold approach
§ Scalable R&D activities
§ Collaboration with related ST and AD projects
§ Training, Education, and Support

§ Activities conducted in the context of interoperability
§ Portable solutions
§ Optimized E4S container images for each machine type
§ Containerized ECP that runs on Astra, A21, El-Capitan, …

§ Work for multiple container implementations
§ Not picking a “winning” container runtime

§ Multiple DOE facilities at multiple scales

Container DevOps8

§ Impractical to use large-scale
supercomputers for DevOps and
testing
§ HPC resources have long batch queues
§ Large effort to port to each new machine

§ Deployment portability with containers
§ Develop Docker containers on your laptop or

workstation
§ Leverage registry services
§ Import container to target deployment
§ Integrate with vendor libs (via ABI compat)
§ Leverage local resource manager (SLURM)
§ Separate networks maintain separate

registries

Singularity Runtime at Sandia9

§ Singularity fit for current needs
§ OSS, publicly available, support backed by Sylabs
§ Simple image plan, support for many HPC systems
§ Docker image support
§ Multiple architectures
§ X86_64, ARM64, POWER9

§ Initial GPU support
§ singualrity exec --nv app1.simg /opt/bin/app

§ Large community involvement

§ Singularity deployed across Sandia
§ CTS-1 and TLCC clusters
§ Astra – First Petascale ARM supercomputer

§ Ongoing collaboration with Sylabs

Sylabs Remote Container Builder

Separated container build workstations for various architectures
§ Can’t use a laptop to build ARM64 or POWER9 CPUs
§ Inflexible, clunky, isolated

Working with Sylabs on new solution – Remote Builder
§ Enables users to build for alternate architectures:

§ Ex. build AARCH64 container from AMD64 workstation
§ Can be used as part of CI/CD process (GitHub, etc.)

§ Builds run natively on alternate architecture, giving great performance
§ Centralized resource pool:

§ Lowers TCO by decreasing the need for workstations of multiple architectures
§ Enables users to build containers without privilege
§ Native integration with Singularity CLI
§ Can be deployed on-premise via Singularity Enterprise

§ More info: https://sylabs.io/singularity-enterprise/

Case Study 1: SNL ATDM App

Points:
• Supporting SPARC containerized build &

deployment
• Deployed on Astra with Singularity
• Near-native performance using a container

• Container faster due to new
optimizations for TX2

• Testing HIFiRE-1 Experiment (MacLean et
al. 2008)

Takeaway: Production HPC Applications can be deployed with containers

Case Study 2: Nalu CFD12

0.900

0.950

1.000

1.050

1.100

1.150

1.200

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

0 2 4 6 8 10 12 14 16 18 20

Co
nt

ai
ne

r
Sp

ee
du

p

M
ea

n
W

al
l T

im
e

(s
ec

.)

Nodes

Nalu - Container vs. Native - Strong Scaling

Native Container Ratio

Agelastos, A, Younge, A et. al, (U) Quantifying Metrics to Evaluate Containers for Deployment and Usage of NNSA Production Applications, NECDC 2018

Nalu: A generalized unstructured massively parallel
low Mach CFD flow code designed to support
energy applications of interest

Spack environments help with building containers

§ We recently started providing base images with preinstalled.
§ Very easy to build a container with some Spack packages in it:

spack-docker-demo/
Dockerfile
spack.yaml

Base image with Spack
in PATH

Copy in spack.yaml
Then run spack install

List of packages to install,
with constraints

Build with docker build .

Run	with	Singularity
(or	some	other	tool)

Spack

Emerging workloads on HPC with Containers

§ Support emerging AI/ML/DL frameworks on HPC
§ Containers useful to adapt ML software to HPC
§ Already supported and heavily utilized in industry

§ Extreme-scale Scientific Software Stack (E4S)
§ Includes TensorFlow & Pytorch in container image
§ Find Sameer Shende for more details! – e4s.io

§ Working with DOE app teams to deploy custom ML tools in containers
§ Investigating scalability challenges and opportunities

Case Study 3: Reinforcement Learning Algorithms

• An evolutionary approach for multi-objective optimization
• Evolutionary Algorithms are gradient-free population-based methods
• EA benefits from parallelization and does not require GPU acceleration

• Population of agents is generated and attempts a problem in parallel
• High performance agents are used for next population generation

• We are using Astra for scaling of ASTool1
• Coevolves an agent’s decision making

policy and body
• Built Singularity container
• Ubuntu 16.04, NumPy, PyBullet, …
• Simple to use and modify

• 500 nodes - 7.5 hours to complete
• Next steps:
• Eliminate major software performance inefficiencies and bottlenecks
• Apply lessons-learned to our own multi-objective optimization problem

1. https://github.com/hardmaru/astool

Credit: https://designrl.github.io/

Takeaway: Containers can support Emerging HPC workloads like Reinforcement Learning

Case Study 4: Containerized ATSE

docker build -t "gitlab.sandia.gov/atse/astra:1.2.2" .

docker push gitlab.sandia.gov/atse/astra:1.2.2

singularity build atse-astra-1.2.2.simg docker://gitlab.sandia.gov/atse/astra:1.2.2

1

2

Sandia GitLab
Container
Registry

3

salloc -N 2048 -t 4:00:00
mpirun -np 114688 -npernode 56 singularity exec atse-astra-1.2.2.simg /home/user/myapp

4

On workstation where user has root:

ATSE Programming Environment

Takeaway: Deployed & validated upgraded ATSE in a container before machine upgrade

Containers on Secure Networks17

§ SNL containers are primarily built on unclassified systems then moved
to air gapped networks via automated transfers

§ Cybersecurity approvals in place to run containers on all networks
§ Security controls used in running containers on HPC systems
§ Working to validate software compliance

§ Automated Transfer Services to air gapped networks
§ Challenges of automated transfers
§ Size – 5GB-10GB are ideal
§ Integrity – md5 is enough
§ Transfer policies – executables, code, etc.

Containers will fully work with automated transfers for use in air gapped networks

Future Containerized CI Pipeline
§ As a developer I want to generate container builds from code pull requests so

that containers are used to test new code on target HPC machines.

Warning: Currently just Slideware

Container Takeaways (aka tupperware?)

§ Use Docker to build manifests to assemble full app suites from scratch
§ Developers specify base OS, configuration, TPLs, compiler installs, etc
§ Leverage base or intermediate container images (eg: TOSS RPMs in a container)

§ Leverage container registry services for storing images
§ Import/flatten Docker images into Singularity & run on HPC resources
§ Also works for Charliecloud compatibility

§ Advantages
§ Simplify deployment to analysts (just run this container image)
§ Simplify new developer uptake (just develop FROM my base container image)
§ Decouple development from software release cycle issues
§ Reproducibility has a new hope?

§ Caveats
§ ABI compatibility with MPI an ongoing issue
§ Focus is on x86_64 images, alternative archs require more work
§ Can’t build an ARM64 container image from my Mac laptop w/ x86_64

§ Containers are an option in HPC, not a mandate

Conclusion

§ Demonstrated value of container models in HPC
§ Deployments in testbeds to production HPC
§ Initial performance is promising
§ Modern DevOps approach with containers
§ Deployed on several Sandia systems

§ ECP Supercontainers
§ Enable containers at Exascale
§ Embrace software diversity while insuring interoperability
§ Simplify HPC application deployment
§ Enable next-gen computing ecosystems

§ Containers can increase software flexibility in HPC

Acknowledgements:
Kevin Pedretti (1423)
Anthony Agelastos (9326)
Si Hammond (1422)
Doug Pase (9326)
Aron Warren (9327)
Stephen Olivier (1423)
Justin Lamb (9326)
Erik Illescas (9327)
Ron Brightwell (1423)

Collaborators:
Shane Canon (LBNL/NERSC)
Todd Gamblin (LLNL)
Reid Priedhorsky (LANL)
Sameer Shende (Oregon)

Thanks!
ajyoung@sandia.gov

Want to learn more about containers?
At tend the Conta iner Tu to r ia l @ SC19

Interested in helping & col laborat ing?
Students , Pos tdocs , Co l labora to rs… emai l !

CANOPIE-HPC WORKSHOP

Containers and New Orchestration Paradigms for
Isolated Environments in HPC

canopie-hpc.org

§ In coordination with Supercomputing 2019 (SC19) in Denver
§ Proceedings published in IEEE TCHPC
§ Submission Deadline: Monday, September 2nd, 2019
§ Conference Date: Monday, November 18th, 2019
§ SC19 workshop dedicated to containers & software environments

Backup Slides

