

Supercontainers in HPC

PRESENTED BY Andrew J. Younge Sandia National Laboratories ajyoung@sandia.gov

E4S Forum - IEEE Cluster 2019

September 23rd, 2019

SAND2019-11335 C Unclassified Unlimited Release Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Motivation

- DOE/NNSA and Sandia have long history of investment in HPC
- Mission workloads computational requirements demand scale
 - Tightly coupled BSP simulation codes typically use MPI for communication
 - Many workload ensembles quickly expanding to ML/DL/AI
- Public cloud computing is often prohibitive
 - Both in cost and security models
- However, HPC is not traditionally as flexible as "the cloud"
 - Shared resource models
 - Static software environments
 - Not always best fit for emerging apps and workflows
- What about Containers?
 - Can we support containers in HPC in the same way as industry?
 - Does this model fit for HPC and emerging workloads across DOE?
 - Can we adapt our programming environments into container images?

What is a Container?

- Unit of software which packages up all code and dependencies necessary to execute single process or task
- Encapsulates the entire software ecosystem (minus the kernel)
- OS-level virtualization mechanism
 - Different than Virtual Machines
 - Think "chroot" on steroids, BSD Jails
 - Dependent on host OS, which is (usually) Linux
 - Uses namespaces (user, mount, pid, etc)
- Docker is the leading container runtime
 - Used extensively in industry/cloud enterprise
 - Foundation for Kubernetes and Google cloud
 - Supported in Amazon AWS cloud

Initial HPC Container Vision

- Support HPC software development and testing on laptops/workstations
 - Create working container builds that can run on supercomputers
 - Minimize dev time on supercomputers
- Developers specify how to build the environment AND the application
 - Users just import a container and run on target platform
 - Have many containers, but with different manifests for arch, compilers, etc.
 - Not bound to vendor and sysadmin software release cycles
- Performance matters
 - Use mini-apps to "shake out" container implementations on HPC
 - Envision features to support future workflows (ML/DL/in-situ analytics)

Containers in HPC

Wanted Features

BYOE - Bring-Your-Own-Environment

 Developers define the operating environment and system libraries in which their application runs

Composability

- Developers have control over how their software environment is composed of modular components as container images
- Enable reproducible environments that can potentially span different architectures

Portability

- Containers can be rebuilt, layered, or shared across multiple different computing systems
- Potentially from laptops to clouds to advanced supercomputing resources

DevOps

- Integrate with revision control systems like Git
- Include build manifests and container images using container registries

Conflicting Features

- Overhead
 - HPC applications cannot incur significant overhead from containers

Micro-Services

- Micro-services container methodology does not apply to current HPC workloads
- 1 app/node with multiple processes or threads per container

On-node Partitioning

On-node partitioning with cgroups unnecessary

Root Operation

- Containers allow root-level access control to users
- Root is a significant security risk for HPC facilities

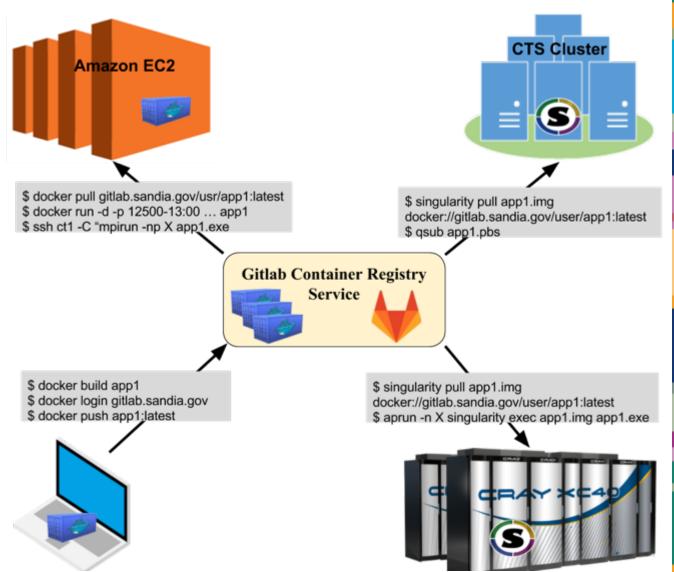
Commodity Networking

- Common network control mechanisms are built around commodity networking (TCP/IP)
- Supercomputers utilize custom interconnects w/ OS kernel bypass operations

HPC Container Runtimes

- Docker is not good fit for running HPC workloads
 - Building with Docker on my laptop is ok
 - Security issues, no HPC integration
- Several different container options in HPC

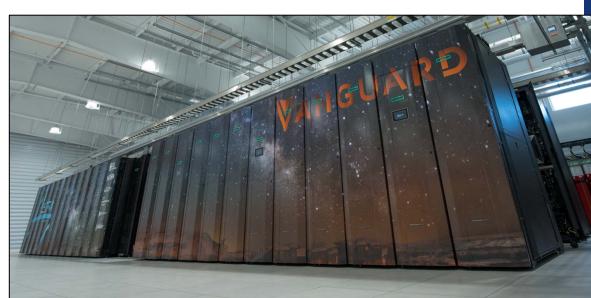
- All 3 HPC container runtimes are usable in HPC today
- Each runtime offers different designs and OS mechanisms
 - Storage & mgmt of images
 - User, PID, Mount namespaces
 - Security models
 - OCI vs Docker vs Singularity images
 - Image signing, validation, registries, etc


ECP Supercontainers

- Joint DOE effort Sandia, LANL, LBNL, LLNL, U. of Oregon
- Ensure container runtimes will be scalable, interoperable, and well integrated across DOE
 - Enable container deployments from laptops to Exascale
 - Assist ECP applications and facilities leverage containers most efficiently
- Three-fold approach
 - Scalable R&D activities
 - Collaboration with related ST and AD projects
 - Training, Education, and Support
- Activities conducted in the context of interoperability
 - Portable solutions
 - Optimized E4S container images for each machine type
 - Containerized ECP that runs on Astra, A21, El-Capitan, ...
 - Work for multiple container implementations
 - Not picking a "winning" container runtime
 - Multiple DOE facilities at multiple scales

Container DevOps

- Impractical to use large-scale supercomputers for DevOps and testing
 - HPC resources have long batch queues
 - Large effort to port to each new machine
- Deployment portability with containers
 - Develop Docker containers on your laptop or workstation
 - Leverage registry services
 - Import container to target deployment
 - Integrate with vendor libs (via ABI compat)
 - Leverage local resource manager (SLURM)
 - Separate networks maintain separate registries

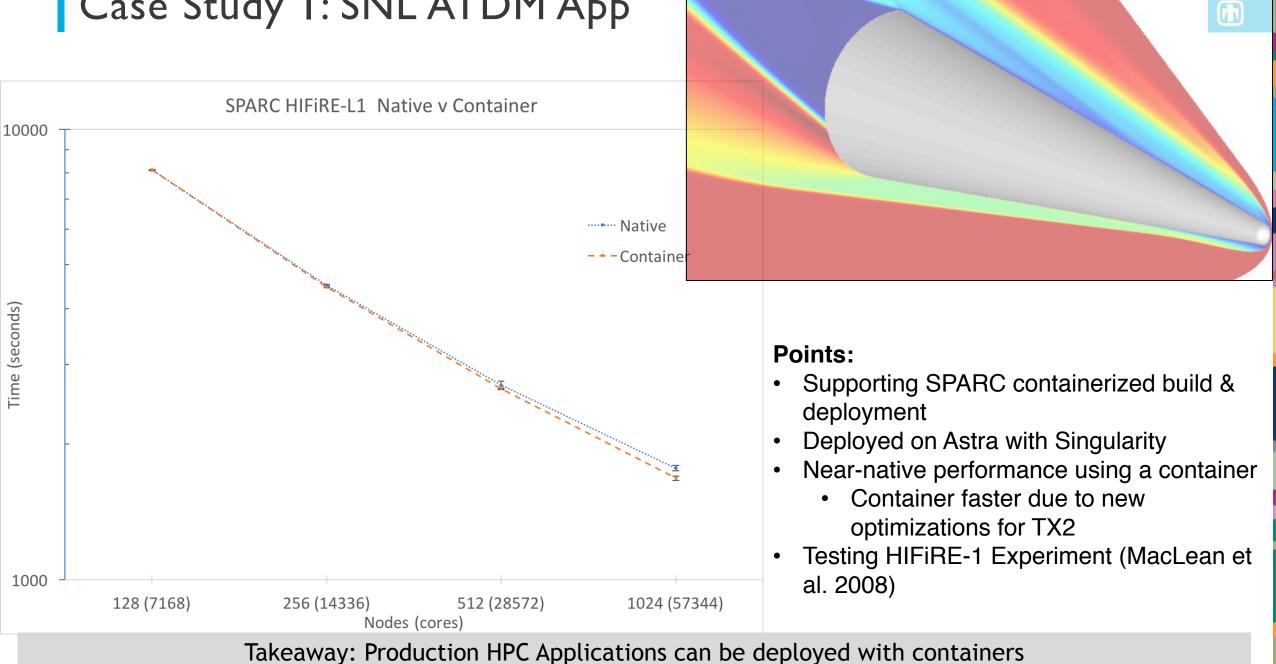


67

Singularity Runtime at Sandia

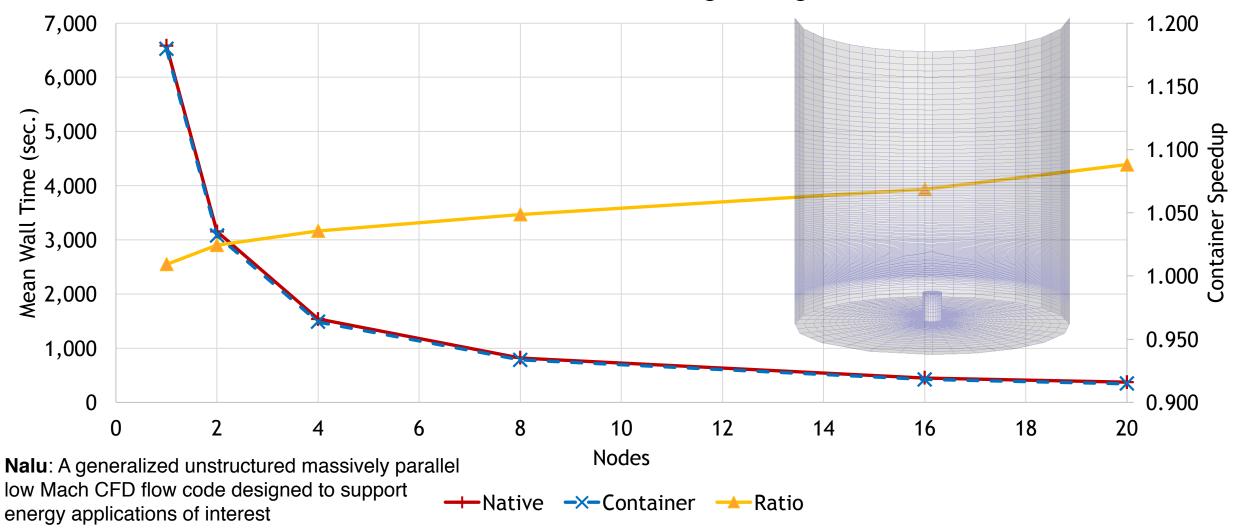
- Singularity fit for current needs
 - OSS, publicly available, support backed by Sylabs
 - Simple image plan, support for many HPC systems
 - Docker image support
 - Multiple architectures
 - X86_64, ARM64, POWER9
 - Initial GPU support
 - singualrity exec --nv app1.simg /opt/bin/app
 - Large community involvement
- Singularity deployed across Sandia
 CTS-1 and TLCC clusters
 - Astra First Petascale ARM supercomputer
- Ongoing collaboration with Sylabs

Separated container build workstations for various architectures


- Can't use a laptop to build ARM64 or POWER9 CPUs
- Inflexible, clunky, isolated

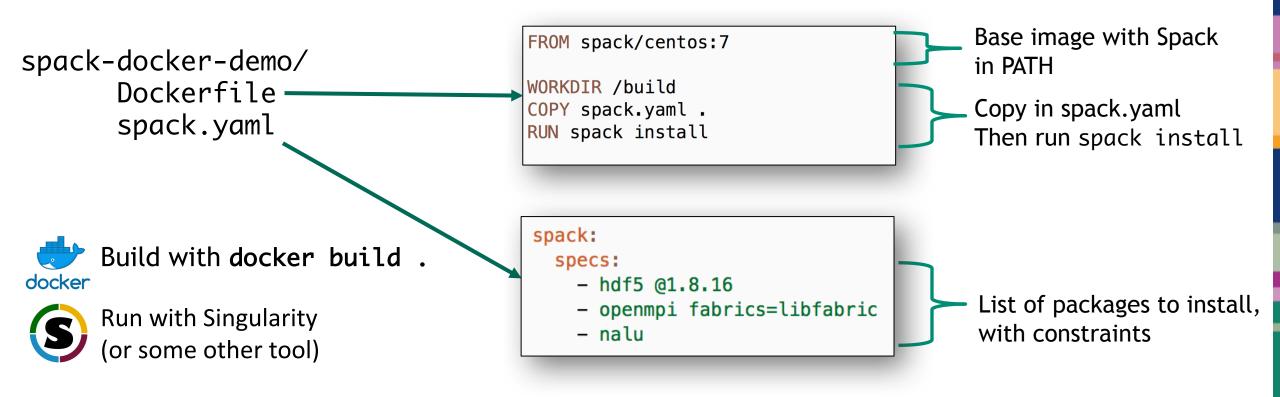
Working with Sylabs on new solution – Remote Builder

- Enables users to build for alternate architectures:
 - Ex. build AARCH64 container from AMD64 workstation
 - Can be used as part of CI/CD process (GitHub, etc.)
- Builds run natively on alternate architecture, giving great performance
- Centralized resource pool:
 - Lowers TCO by decreasing the need for workstations of multiple architectures
- Enables users to build containers without privilege
- Native integration with Singularity CLI
- Can be deployed on-premise via Singularity Enterprise
 - More info: <u>https://sylabs.io/singularity-enterprise/</u>



Case Study I: SNL ATDM App

12 Case Study 2: Nalu CFD


Nalu - Container vs. Native - Strong Scaling

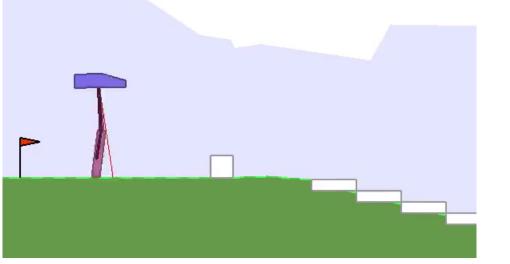
Agelastos, A, Younge, A et. al, (U) Quantifying Metrics to Evaluate Containers for Deployment and Usage of NNSA Production Applications, NECDC 2018

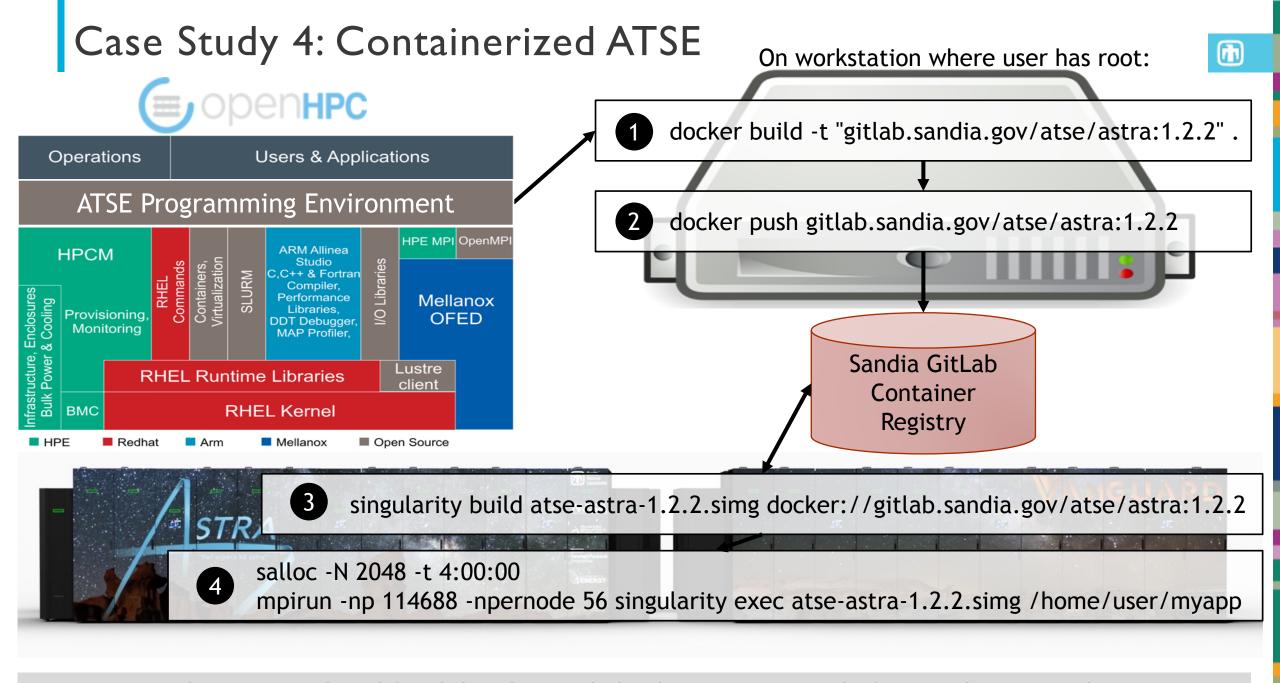
Spack environments help with building containers

- We recently started providing base images with Spack preinstalled.
- Very easy to build a container with some Spack packages in it:

Emerging workloads on HPC with Containers

- Support emerging AI/ML/DL frameworks on HPC
 - Containers useful to adapt ML software to HPC
 - Already supported and heavily utilized in industry
- Extreme-scale Scientific Software Stack (E4S)
 - Includes TensorFlow & Pytorch in container image
 - Find Sameer Shende for more details! <u>e4s.io</u>
- Working with DOE app teams to deploy custom ML tools in containers
- Investigating scalability challenges and opportunities

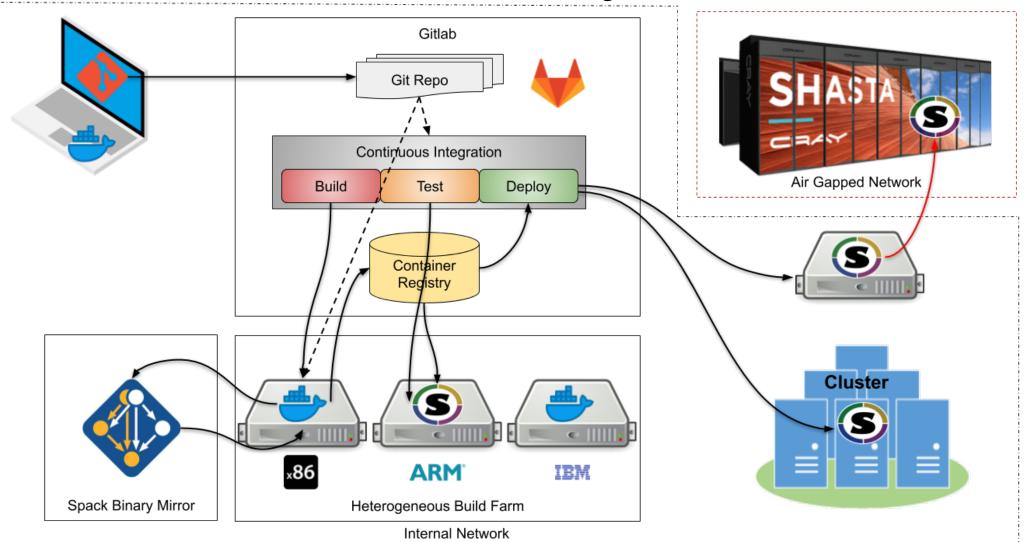

Case Study 3: Reinforcement Learning Algorithms


- An evolutionary approach for multi-objective optimization
 - Evolutionary Algorithms are gradient-free population-based methods
 - EA benefits from parallelization and does not require GPU acceleration
 - Population of agents is generated and attempts a problem in parallel
 - High performance agents are used for next population generation
- We are using Astra for scaling of ASTool¹
 - Coevolves an agent's decision making policy and body
- Built Singularity container
 - Ubuntu 16.04, NumPy, PyBullet, ...
 - Simple to use and modify
- 500 nodes 7.5 hours to complete
- Next steps:
 - Eliminate major software performance inefficiencies and bottlenecks
 - Apply lessons-learned to our own multi-objective optimization problem

1. https://github.com/hardmaru/astool

Takeaway: Containers can support Emerging HPC workloads like Reinforcement Learning

blem


Takeaway: Deployed & validated upgraded ATSE in a container before machine upgrade

Containers on Secure Networks

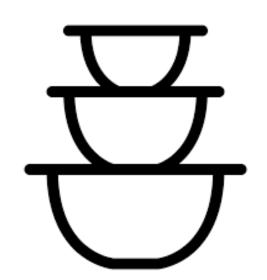
- SNL containers are primarily built on unclassified systems then moved to air gapped networks via automated transfers
- Cybersecurity approvals in place to run containers on all networks
- Security controls used in running containers on HPC systems
 - Working to validate software compliance
- Automated Transfer Services to air gapped networks
- Challenges of automated transfers
 - Size 5GB-10GB are ideal
 - Integrity md5 is enough
 - Transfer policies executables, code, etc.

Future Containerized CI Pipeline

As a developer I want to generate container builds from code pull requests so that containers are used to test new code on target HPC machines.

Container Takeaways (aka tupperware?)

Use Docker to build manifests to assemble full app suites from scratch


- Developers specify base OS, configuration, TPLs, compiler installs, etc
- Leverage base or intermediate container images (eg: TOSS RPMs in a container)
- Leverage container registry services for storing images
- Import/flatten Docker images into Singularity & run on HPC resources
 - Also works for Charliecloud compatibility

Advantages

- Simplify deployment to analysts (just run this container image)
- Simplify new developer uptake (just develop FROM my base container image)
- Decouple development from software release cycle issues
- Reproducibility has a new hope?

Caveats

- ABI compatibility with MPI an ongoing issue
- Focus is on x86_64 images, alternative archs require more work
 - Can't build an ARM64 container image from my Mac laptop w/ x86_64
- Containers are an option in HPC, not a mandate

Conclusion

- Demonstrated value of container models in HPC
 - Deployments in testbeds to production HPC
 - Initial performance is promising
 - Modern DevOps approach with containers
 - Deployed on several Sandia systems
- ECP Supercontainers
 - Enable containers at Exascale
 - Embrace software diversity while insuring interoperability
 - Simplify HPC application deployment
 - Enable next-gen computing ecosystems
- Containers can increase software flexibility in HPC

Collaborators:

Shane Canon (LBNL/NERSC) Todd Gamblin (LLNL) Reid Priedhorsky (LANL) Sameer Shende (Oregon)

Thanks! ajyoung@sandia.gov

Want to learn more about containers? Attend the Container Tutorial @ SC19 Interested in helping & collaborating? Students, Postdocs, Collaborators... email! **CANOPIE-HPC WORKSHOP**

63

Containers and New Orchestration Paradigms for Isolated Environments in HPC

canopie-hpc.org

- In coordination with Supercomputing 2019 (SC19) in Denver
- Proceedings published in IEEE TCHPC
- Submission Deadline: Monday, September 2nd, 2019
- Conference Date: Monday, November 18th, 2019
- SC19 workshop dedicated to containers & software environments

Backup Slides

