Sandia

Exceptional service in the national interest National _
Laboratories

P Y Y 1):% £,)

" 0
I T'(x)- o fx,0)dx = M(T({)-;ohl(.

[d

Unclassified Unlimited Release Christian R. Trott, - Center for Computing Research
Sandia National Laboratories/NM

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525.

SAND2019-11367 PE

" Cost Of Software et

10 LOC / hour ~ 20k LOC / year

= Optimistic estimate: 10% of an application needs to get rewritten for adoption
of Shared Memory Parallel Programming Model

= Typical Apps: 300k — 600k Lines
= Uintah: 500k, QMCPack: 400k, LAMMPS: 600k; QuantumEspresso: 400k
= Typical App Port thus 2-3 Man-Years

= Sandia maintains a couple dozen of those
= Large Scientific Libraries
= E3SM: 1,000k Lines x 10% => 5 Man-Years
= Trilinos: 4,000k Lines x 10% => 20 Man-Years

Applications Libraries « Frameworks (=) Sundi

" t=0 t=40ps =
B ~ § wd=1mm
R g MY — dx24dx 160
- 2/ T=450K (Jet)
ey ¥ T = 1000 K (Cross-Flow)
< ¥, 00 (Jet)
20 (Cross-Flow)
1 o
18 7 ’ Sk 1323 i
N A
L3338 IR

UT Uintah
Combustion

SNL LAMMPS

Molecular Dynamics
ORNL Raptor

SNL NALU
Large Eddy Sim

Wind Turbine CFD

Kokkos

FOR Sna |

b ALY C) C
ORNL Summit ; ' e SNL Astra
IBM Power9 / NVIDIA Volta LANL/SNL Trlnlty ANL Aurora ARM Architecture
Intel Haswell / Intel KNL Intel Xeon CPUs + Intel Xe Accelerators

~ What is Kokkos?) i,

= A C++ Programming Model for Performance Portability

= |mplemented as a template library on top of CUDA, OpenMP, ROCm, ...
= Aims to be descriptive not prescriptive
= Aligns with developments in the C++ standard
= Expanding solution for common needs of modern science/engineering codes
= Math libraries based on Kokkos
= Tools which allow inside into Kokkos
= Jtis Open Source

= Maintained and developed at https://github.com/kokkos
= |t has many users at wide range of institutions.

https://github.com/kokkos

~ Kokkos EcoSystem

/

(

Kokkos
Tools

|\

Science and Engineering Applications

Trilinos

Kokkos EcoSystem

i Kokkos Kernels

Kokkos Core

=

|

Kokkos Remote Spaces] [ﬁ}

CPU + GPU

Sandia
National
Laboratories

~ Kokkos Development Team)
L kokkos

—~ Sandia
» Los Alamos National Argonne o
NATIONAL LABORATORY laboratories NATIONAL LABORATORY

EST.1943

| BERKELEY LAB <¥3¢ CSCS

%OAK RIDGE B

National Laboratory

Kokkos Core: C.R. Trott, D. Sunderland, N. Ellingwood, D. Ibanez, J. Miles, D. Hollman, V. Dang,
H. Finkel, N. Liber, D. Lebrun-Grandie, B. Turcksin, J. Wilke, D. Arndt
former: H.C. Edwards, D. Labreche, G. Mackey, S. Bova

Kokkos Kernels: S. Rajamanickam, N. Ellingwood, K. Kim, C.R. Trott, V. Dang, L. Berger, J. Wilke, W. McLendon
Kokkos Tools: D. Poliakoff, S. Hammond, C.R. Trott, D. Ibanez, S. Moore
Kokkos Support: C.R. Trott, G. Shipman, G. Lopez, G. Womeldorff, and all of the above as needed

former: H.C. Edwards, D. Labreche, Fernanda Foertter

-~ Kokkos Core Abstractions)

Parallel Execution

Data Structures

Memory Spaces (“Where”)
- HBM, DDR, Non-Volatile, Scratch - CPU, GPU, Executor Mechanism

Execution Spaces (“Where”)

Memory Layouts Execution Patterns

- Row/Column-Maijor, Tiled, Strided - parallel_for/reduce/scan, task-spawn
Memory Traits ("How”) Execution Policies (“How”)
- Streaming, Atomic, Restrict - Range, Team, Task-Graph

~ Kokkos Core Capabilities)

Laboratories

I

Parallel Loops

Parallel Reduction

Tightly Nested
Loops

Non-Tightly Nested
Loops

Task Dag

Data Allocation
Data Transfer
Atomics

Exec Spaces

parallel_for(N, KOKKOS_LAMBDA (inti){...BODY... });

parallel_reduce(RangePolicy<ExecSpace>(0,N), KOKKOS_LAMBDA (int i, double& upd) {
...BODY...
upd += ...

}, Sum<>(result));

parallel_for(MDRangePolicy<Rank<3> > ({0,0,0},{N1,N2,N3},{T1,T2,T3},
KOKKOS_LAMBDA (inti, intj, int k) {...BODY...});

parallel_for(TeamPolicy<Schedule<Dynamic>>(N, TS), KOKKOS_LAMBDA (Team team) {
... COMMON CODE 1 ...
parallel_for(TeamThreadRange(team, M(N)), [&] (intj) { ... INNER BODY... });
... COMMON CODE 2 ...

1

task_spawn(TaskTeam(scheduler, priority), KOKKOS_LAMBDA (Team team) { ... BODY });
View<double**, Layout, MemSpace> a(“A”,N,M);

deep_copy(a,b);

atomic_add(&ali],5.0); View<double*,MemoryTraits<AtomicAccess>> a(); a(i)+=5.0;

Serial, Threads, OpenMP, Cuda, HPX (experimental), ROCm (experimental)

Fa

Kokkos Kernels rh) s

= BLAS, Sparse and Graph Kernels on top of Kokkos and its View abstraction
= Scalar type agnostic, e.g. works for any types with math operators
= Layout and Memory Space aware

= Can call vendor libraries when available

= View have all their size and stride information => Interface is simpler

// BLAS // Kokkos Kernels
int M,N,K,LDA,LDB; double alpha, beta; double *xA, *B, *C; double alpha, beta; View<doublexx> A,B,C;
dgemm('N', 'N',M,N,K,alpha,A,LDA,B,LDB,beta,C,LDC); gemm('N', 'N',alpha,A,B,beta,C);

= Interface to call Kokkos Kernels at the teams level (e.g. in each CUDA-Block)

parallel_for("NestedBLAS", TeamPolicy<>(N,AUT0), KOKKOS_LAMBDA (const team_handle_t& team_handle) {
// Allocate A, x and y in scratch memory (e.g. CUDA shared memory)
// Call BLAS using parallelism in this team (e.g. CUDA block)

gemv(team_handle, 'N',alpha,A, x,beta,y)

};

_Kokkos-Tools Profiling & Debugging) s,

= Performance tuning requires insight, but tools are different on each platform
= KokkosTools: Provide common set of basic tools + hooks for 3rd party tools
= One common issue abstraction layers obfuscate profiler output
= Kokkos hooks for passing names on
= Provide Kernel, Allocation and Region |ek kit ol

& Analysis Target Analysis Type | B Collection Log| | ¥ Summary 1) Bottom-up
u N on GEd to recom p | | e Grouping: | Frame Domain / Frame / Function / Call Stack

. CPU Tir

= Uses runtime hooks B
. . Didie @Poor [JOk @ Ideal [Over |'mbala
= Set via env variable raralelFor 469 sress . 0
1 1.615s [I_ 1 0.17
b3 1.593s [0.18
b2 1.560s [l 1D 0.21
P[No frame domain - Outside any frame] 0.0795' 1.34
D ParallelReduce.Dot 1.952s [N 0.53
D ParallelFor.Z4mainEUIRKIE_ 2.168s [[N 0.17

= DOE Machine Announcements T

Laboratories

= Now publicly announced that DOE is buying both AMD and Intel GPUs
= Argonne: Cray with Intel Xeon + Intel Xe Compute
= ORNL: Cray with AMD CPUs + AMD GPUs
= NERSC: Cray with AMD CPUs + NVIDIA GPUs

= Have been planning for this eventuality:

= Kokkos ECP project extended and refocused to include developers at
Argonne, Oak Ridge, and Lawrence Berkeley - staffing is in place

= HIP backend for AMD: main development at ORNL
* The current ROCm backend is based on a compiler which is now deprecated ...

= SYCL for Intel: main development at ANL
= OpenMPTarget for AMD, Intel and NVIDIA, lead at Sandia

~ Supporting Aurora) i

Laboratories

= Two backend plans

= SYCL: will need Intel proposed extensions
= ANL will lead development

= OpenMPTarget: OpenMP 5.x based
= NERSC/SNL will lead development
= Timeline:
= Q2 FY20: Initial capabilities, enough for many miniApps
= Q4 FY20: Functional backends
= FY21: Production support

~ OpenMPTarget Backend)

Laboratories

= Started work on this more than 2 years ago

= Hindered by compiler bugs: 15 min work on backend, 6 hours work on
compiler bug reproducer, 6 months wait for fix, repeat

= With Clang 9 first time this isn’t the case
= Got some capabilities:

= RangePolicy: parallel _for, parallel_reduce

= MDRangePolicy: parallel _for

= \iews

~ SYCL Backend)

Started recently both with Codeplays and Intels compiler
Not much working yet
= RangePolicy: parallel_for works with Codeplay

Looking into some of the problems around restrictions of SYCL such as kernel
naming

We likely need to rely on Intel proposed extensions

= A good chunk of which are already implemented!

Py
-

Kokkos Based Projects) en

Production Code Running Real Analysis Today
= We got about 12 or so.

Production Code or Library committed to using Kokkos and actively porting
= Somewhere around 35

Packages In Large Collections (e.g. Tpetra, Muelu in Trilinos) committed to
using Kokkos and actively porting

= Somewhere around 65

Counting also proxy-apps and projects which are evaluating Kokkos (e.g.
projects who attended boot camps and trainings).

= Estimate 100-150 packages.

Py : Sandia
. Some Kokkos Users \g/) e,

- NATIONAL LABORATORY Atlas 3D
National

’f;s Alamos Laboratories AR
NATIONAL LABORATORY \\\r
’F‘ » ° N R E L

@ Sandia Pacific Northwest

EST.1943

NATIONAL RENEWABLE ENERGY LABORATORY

National Laboratory NATIONAL LABORATORY

0

SNAVAL <@% cscs

THE LABORATORY
U UNIVERSITY
OF UTAH — . TI.ITI
IJ JULICH

. Forschungszentrum TECH[\“SCHE
Max-Planck-Institut UNIVERSITAT

/ : . o MUNCHEN
fir Plasmaphysik Y] (%) Rensselaer

BERKELEY LAB

% OAK RIDGE Argonne a L STATE

” Sparta: Production Simulation at Scale @i

Laboratories
= Stochastic PArallel Rarefied-gas Time-

accurate Analyzer SPARTA Weak Scaling
. . . 500
= Adirect simulation Monte Carlo code o = =
= Developers: Steve Plimpton, Stan Moore, & “©
. . 3 350
Michael Gallis 2 300
= Only code to have run on all of Trinity TN L .
= 3 Trillion particle simulation using both 3 Egk —8— —o
HSW and KNL partition in a single MPI & 4
run (~20k nodes, ~1M cores) "y s s m e s 256
= Benchmarked on 16k GPUs on Sierra A aswell ——iNL —a=Vi00

= Production runs now at 5k GPUs
= Co-Designed Kokkos::ScatterView

= Aligning Kokkos with the C++ Standard (@,

= Long term goal: move capabilities from Kokkos into the ISO standard

= Concentrate on facilities we really need to optimize with compiler

Move accepted features
to legacy support

Propose for C++

Kokkos Legacy C++ Standard

Implemented legacy
capabilities in terms of Back port to compilers we got
new C++ features C++ Backport

" . Sandia
.. C++ Features in the Works) e

= First success: atomic_ref<T> in C++20
= Provides atomics with all capabilities of atomics in Kokkos
= atomic_ref(a[i])+=5.0; instead of atomic_add(&ali],5.0);
= Next thing: Kokkos::View => std::mdspan
= Provides customization points which allow all things we can do with
Kokkos::View
= Better design of internals though! => Easier to write custom layouts.
= Also: arbitrary rank (until compiler crashes) and mixed compile/runtime ranks
= We hope will land early in the cycle for C++23 (i.e. early in 2020)
= Production reference implementation: https://github.com/kokkos/mdspan
= Also C++23: Executors and Basic Linear Algebra (just began design work)

https://github.com/kokkos/mdspan

24 1 Sandia
ha Ll N kS 1| Ntiona

Laboratories

= https://github.com/kokkos Kokkos Github Organization

Kokkos: Core library, Containers, Algorithms

Kokkos-Kernels: Sparse and Dense BLAS, Graph, Tensor (under development)
Kokkos-Tools: Profiling and Debugging

Kokkos-MiniApps: MiniApp repository and links

Kokkos-Tutorials: Extensive Tutorials with Hands-On Exercises

= https://cs.sandia.gov Publications (search for ‘"Kokkos’)

Many Presentations on Kokkos and its use in libraries and apps

= http://on-demand-gtc.gputechconf.com Recorded Talks

Presentations with Audio and some with Video

https://github.com/kokkos
https://cs.sandia.gov/
http://on-demand-gtc.gputechconf.com/

Sandia
National
Laboratories

~ Improved Fine Grained Tasking

Generalization of TaskScheduler abstraction to allow user to
be generic with respect to scheduling strategy and queue

Implementation of new queues and scheduling strategies:
= Single shared LIFO Queue (this was the old implementation)
= Multiple shared LIFO Queues with LIFO work stealing
= Chase-Lev minimal contention LIFO with tail (FIFO) stealing
= Potentially more

Reorganization of Task, Future, TaskQueue data structures to
accommodate flexible requirements from the TaskScheduler

= Forinstance, some scheduling strategies require additional
storage in the Task

Questions: David Hollman

Sandia
|I1 National
Laboratories

Fibonacci 30 (V100)

7

w A~ (@) (o))

M|II|on Tasks per Second
N

mOld Single Queue mNew Single Queue
mMulti Queue m Chase-Leve MQ

~ Kokkos Remote Spaces: PGAS Support @

Laboratories

» PGAS Models may become more viable for HPC with both changes in network
architectures and the emergence of “super-node” architectures

 Example DGX2 VI00 V100 V100 V100 £ VI00 Vi V100 V100
= First “super-node” T
i~ :7
Vieo vioo Vio0 vioo = vico Vvi00 Vvioo Vioo

= 300GB/s per GPU link
» |dea: Add new memory spaces which return data handles with shmem semantics
to Kokkos View

» View<double**[3], LayoutLeft, NVShmemSpace> a(“A”,N,M);

P . template<>
|
Operator a(i,3,k) returns: struct NVShmemElement<double> {

NVShmemElement(int pe_, double* ptr_):pe(pe_),ptr(ptr_) {}

int pe; double* ptr;

void operator = (double val) { shmem double p(ptr,val,pe); }
}s

: PGAS Performance Evaluation: miniFE

= Test Problem: CG-Solve

Using the miniFE problem N*3 6000
Compare to optimized CUDA 5000
MPI version is using overlapping -
DGX2 4 GPU workstation 3 4000
Dominated by SpMV (Sparse Matrix -g,
Vector Multiply) 3 3000
Make Vector distributed, and store & 2000
global indicies in Matrix =

: 1000

3 Variants

Full use of SHMEM 0

Inline functions by ptr mapping

= Store 16 pointers in the View
Explicit by-rank indexing

= Make vector 2D

= Encode rank in column index

CGSolve Performance

Sandia
r'|1 National
Laboratories

-4
&
=

=
-4

N\ Ei

e
bl e e e e

&

e e e e e e e e e i e

10013 200"3
m MPI = SHMEM

A,

400”3

@ SHMEM-Inline 8 SHMEM-Index

