
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S.

Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525.

The Kokkos C++ Performance Portability EcoSystem
Christian R. Trott, - Center for Computing Research

Sandia National Laboratories/NM

Unclassified Unlimited Release

SAND2019-11367 PE

Cost Of Software

§ Optimistic estimate: 10% of an application needs to get rewritten for adoption
of Shared Memory Parallel Programming Model

§ Typical Apps: 300k – 600k Lines

§ Uintah: 500k, QMCPack: 400k, LAMMPS: 600k; QuantumEspresso: 400k

§ Typical App Port thus 2-3 Man-Years

§ Sandia maintains a couple dozen of those

§ Large Scientific Libraries

§ E3SM: 1,000k Lines x 10% => 5 Man-Years

§ Trilinos: 4,000k Lines x 10% => 20 Man-Years

10 LOC / hour ~ 20k LOC / year

Kokkos

ORNL Summit
IBM Power9 / NVIDIA Volta LANL/SNL Trinity

Intel Haswell / Intel KNL
ANL Aurora
Intel Xeon CPUs + Intel Xe Accelerators

SNL Astra
ARM Architecture

SNL NALU
Wind Turbine CFD

SNL LAMMPS
Molecular Dynamics

UT Uintah
Combustion

ORNL Raptor
Large Eddy Sim

Applications Libraries Frameworks

What is Kokkos?
§ A C++ Programming Model for Performance Portability

§ Implemented as a template library on top of CUDA, OpenMP, ROCm, …

§ Aims to be descriptive not prescriptive

§ Aligns with developments in the C++ standard

§ Expanding solution for common needs of modern science/engineering codes

§ Math libraries based on Kokkos

§ Tools which allow inside into Kokkos

§ It is Open Source

§ Maintained and developed at https://github.com/kokkos

§ It has many users at wide range of institutions.

https://github.com/kokkos

Kokkos EcoSystem

Kokkos Development Team

Kokkos Core: C.R. Trott, D. Sunderland, N. Ellingwood, D. Ibanez, J. Miles, D. Hollman, V. Dang,

H. Finkel, N. Liber, D. Lebrun-Grandie, B. Turcksin, J. Wilke, D. Arndt

former: H.C. Edwards, D. Labreche, G. Mackey, S. Bova

Kokkos Kernels: S. Rajamanickam, N. Ellingwood, K. Kim, C.R. Trott, V. Dang, L. Berger, J. Wilke, W. McLendon

Kokkos Tools: D. Poliakoff, S. Hammond, C.R. Trott, D. Ibanez, S. Moore

Kokkos Support: C.R. Trott, G. Shipman, G. Lopez, G. Womeldorff, and all of the above as needed

former: H.C. Edwards, D. Labreche, Fernanda Foertter

Kokkos Core Abstractions
Kokkos

Execution Spaces (“Where”)

Execution Patterns

Execution Policies (“How”)

Memory Spaces (“Where”)

Memory Layouts

Memory Traits (“How”)

Parallel ExecutionData Structures

- CPU, GPU, Executor Mechanism

- parallel_for/reduce/scan, task-spawn

- Range, Team, Task-Graph

- HBM, DDR, Non-Volatile, Scratch

- Row/Column-Major, Tiled, Strided

- Streaming, Atomic, Restrict

Kokkos Core Capabilities
Concept Example

Parallel Loops parallel_for(N, KOKKOS_LAMBDA (int i) { ...BODY… });

Parallel Reduction parallel_reduce(RangePolicy<ExecSpace>(0,N), KOKKOS_LAMBDA (int i, double& upd) {
…BODY...
upd += ...

}, Sum<>(result));

Tightly Nested
Loops

parallel_for(MDRangePolicy<Rank<3> > ({0,0,0},{N1,N2,N3},{T1,T2,T3},
KOKKOS_LAMBDA (int i, int j, int k) {…BODY...});

Non-Tightly Nested
Loops

parallel_for(TeamPolicy<Schedule<Dynamic>>(N, TS), KOKKOS_LAMBDA (Team team) {
… COMMON CODE 1 ...
parallel_for(TeamThreadRange(team, M(N)), [&] (int j) { ... INNER BODY... });
… COMMON CODE 2 ...

});

Task Dag task_spawn(TaskTeam(scheduler , priority), KOKKOS_LAMBDA (Team team) { … BODY });

Data Allocation View<double**, Layout, MemSpace> a(“A”,N,M);

Data Transfer deep_copy(a,b);

Atomics atomic_add(&a[i],5.0); View<double*,MemoryTraits<AtomicAccess>> a(); a(i)+=5.0;

Exec Spaces Serial, Threads, OpenMP, Cuda, HPX (experimental), ROCm (experimental)

Kokkos Kernels
§ BLAS, Sparse and Graph Kernels on top of Kokkos and its View abstraction

§ Scalar type agnostic, e.g. works for any types with math operators
§ Layout and Memory Space aware

§ Can call vendor libraries when available
§ View have all their size and stride information => Interface is simpler

§ Interface to call Kokkos Kernels at the teams level (e.g. in each CUDA-Block)

// BLAS
int M,N,K,LDA,LDB; double alpha, beta; double *A, *B, *C;
dgemm('N','N',M,N,K,alpha,A,LDA,B,LDB,beta,C,LDC);

// Kokkos Kernels
double alpha, beta; View<double**> A,B,C;
gemm('N','N',alpha,A,B,beta,C);

parallel_for("NestedBLAS", TeamPolicy<>(N,AUTO), KOKKOS_LAMBDA (const team_handle_t& team_handle) {
// Allocate A, x and y in scratch memory (e.g. CUDA shared memory)
// Call BLAS using parallelism in this team (e.g. CUDA block)
gemv(team_handle,'N',alpha,A,x,beta,y)

});

Kokkos-Tools Profiling & Debugging
§ Performance tuning requires insight, but tools are different on each platform
§ KokkosTools: Provide common set of basic tools + hooks for 3rd party tools
§ One common issue abstraction layers obfuscate profiler output

§ Kokkos hooks for passing names on
§ Provide Kernel, Allocation and Region

§ No need to recompile
§ Uses runtime hooks
§ Set via env variable

DOE Machine Announcements
§ Now publicly announced that DOE is buying both AMD and Intel GPUs

§ Argonne: Cray with Intel Xeon + Intel Xe Compute

§ ORNL: Cray with AMD CPUs + AMD GPUs

§ NERSC: Cray with AMD CPUs + NVIDIA GPUs

§ Have been planning for this eventuality:

§ Kokkos ECP project extended and refocused to include developers at
Argonne, Oak Ridge, and Lawrence Berkeley - staffing is in place

§ HIP backend for AMD: main development at ORNL
§ The current ROCm backend is based on a compiler which is now deprecated …

§ SYCL for Intel: main development at ANL

§ OpenMPTarget for AMD, Intel and NVIDIA, lead at Sandia

Supporting Aurora
§ Two backend plans

§ SYCL: will need Intel proposed extensions
§ ANL will lead development

§ OpenMPTarget: OpenMP 5.x based
§ NERSC/SNL will lead development

§ Timeline:
§ Q2 FY20: Initial capabilities, enough for many miniApps
§ Q4 FY20: Functional backends
§ FY21: Production support

OpenMPTarget Backend
§ Started work on this more than 2 years ago

§ Hindered by compiler bugs: 15 min work on backend, 6 hours work on
compiler bug reproducer, 6 months wait for fix, repeat

§ With Clang 9 first time this isn’t the case
§ Got some capabilities:

§ RangePolicy: parallel_for, parallel_reduce
§ MDRangePolicy: parallel_for
§ Views

SYCL Backend
§ Started recently both with Codeplays and Intels compiler
§ Not much working yet

§ RangePolicy: parallel_for works with Codeplay
§ Looking into some of the problems around restrictions of SYCL such as kernel

naming
§ We likely need to rely on Intel proposed extensions

§ A good chunk of which are already implemented!

Kokkos Based Projects
§ Production Code Running Real Analysis Today

§ We got about 12 or so.

§ Production Code or Library committed to using Kokkos and actively porting

§ Somewhere around 35
§ Packages In Large Collections (e.g. Tpetra, MueLu in Trilinos) committed to

using Kokkos and actively porting

§ Somewhere around 65
§ Counting also proxy-apps and projects which are evaluating Kokkos (e.g.

projects who attended boot camps and trainings).

§ Estimate 100-150 packages.

Some Kokkos Users

Sparta: Production Simulation at Scale
§ Stochastic PArallel Rarefied-gas Time-

accurate Analyzer
§ A direct simulation Monte Carlo code
§ Developers: Steve Plimpton, Stan Moore,

Michael Gallis
§ Only code to have run on all of Trinity

§ 3 Trillion particle simulation using both
HSW and KNL partition in a single MPI
run (~20k nodes, ~1M cores)

§ Benchmarked on 16k GPUs on Sierra
§ Production runs now at 5k GPUs

§ Co-Designed Kokkos::ScatterView

0

50

100

150

200

250

300

350

400

450

500

4 8 16 32 64 128 256

Pe
rfo

rm
an

ce
 p

er
 N

od
e/

G
PU

SPARTA Weak Scaling

Haswell KNL V100

Aligning Kokkos with the C++ Standard
§ Long term goal: move capabilities from Kokkos into the ISO standard

§ Concentrate on facilities we really need to optimize with compiler

Kokkos

C++ Standard

C++ Backport

Kokkos Legacy

Propose for C++

Back port to compilers we got

Move accepted features
to legacy support

Implemented legacy
capabilities in terms of
new C++ features

C++ Features in the Works

§ First success: atomic_ref<T> in C++20

§ Provides atomics with all capabilities of atomics in Kokkos

§ atomic_ref(a[i])+=5.0; instead of atomic_add(&a[i],5.0);

§ Next thing: Kokkos::View => std::mdspan
§ Provides customization points which allow all things we can do with

Kokkos::View
§ Better design of internals though! => Easier to write custom layouts.

§ Also: arbitrary rank (until compiler crashes) and mixed compile/runtime ranks

§ We hope will land early in the cycle for C++23 (i.e. early in 2020)

§ Production reference implementation: https://github.com/kokkos/mdspan

§ Also C++23: Executors and Basic Linear Algebra (just began design work)

https://github.com/kokkos/mdspan

Links
§ https://github.com/kokkos Kokkos Github Organization

§ Kokkos: Core library, Containers, Algorithms
§ Kokkos-Kernels: Sparse and Dense BLAS, Graph, Tensor (under development)
§ Kokkos-Tools: Profiling and Debugging
§ Kokkos-MiniApps: MiniApp repository and links
§ Kokkos-Tutorials: Extensive Tutorials with Hands-On Exercises

§ https://cs.sandia.gov Publications (search for ’Kokkos’)
§ Many Presentations on Kokkos and its use in libraries and apps

§ http://on-demand-gtc.gputechconf.com Recorded Talks
§ Presentations with Audio and some with Video

https://github.com/kokkos
https://cs.sandia.gov/
http://on-demand-gtc.gputechconf.com/

Improved Fine Grained Tasking
§ Generalization of TaskScheduler abstraction to allow user to

be generic with respect to scheduling strategy and queue
§ Implementation of new queues and scheduling strategies:

§ Single shared LIFO Queue (this was the old implementation)
§ Multiple shared LIFO Queues with LIFO work stealing
§ Chase-Lev minimal contention LIFO with tail (FIFO) stealing
§ Potentially more

§ Reorganization of Task, Future, TaskQueue data structures to
accommodate flexible requirements from the TaskScheduler
§ For instance, some scheduling strategies require additional

storage in the Task 0

1

2

3

4

5

6

7

M
ill

io
n

Ta
sk

s
pe

r S
ec

on
d

Fibonacci 30 (V100)

Old Single Queue New Single Queue

Multi Queue Chase-Leve MQ
Questions: David Hollman

Kokkos Remote Spaces: PGAS Support
§ PGAS Models may become more viable for HPC with both changes in network

architectures and the emergence of “super-node” architectures
§ Example DGX2

§ First “super-node”

§ 300GB/s per GPU link

§ Idea: Add new memory spaces which return data handles with shmem semantics
to Kokkos View
§ View<double**[3], LayoutLeft, NVShmemSpace> a(“A”,N,M);

§ Operator a(i,j,k) returns:

V100 V100 V100 V100

V100 V100 V100 V100

N
VS

w
itc

h V100V100V100V100

V100V100V100V100

N
VS

w
itc

h

template<>
struct NVShmemElement<double> {

NVShmemElement(int pe_, double* ptr_):pe(pe_),ptr(ptr_) {}
int pe; double* ptr;
void operator = (double val) { shmem_double_p(ptr,val,pe); }

};

PGAS Performance Evaluation: miniFE

0

1000

2000

3000

4000

5000

6000

100^3 200^3 400^3

Th
ro

ug
hp

ut

CGSolve Performance

MPI SHMEM
SHMEM-Inline SHMEM-Index

§ Test Problem: CG-Solve
§ Using the miniFE problem N^3
§ Compare to optimized CUDA
§ MPI version is using overlapping
§ DGX2 4 GPU workstation
§ Dominated by SpMV (Sparse Matrix

Vector Multiply)
§ Make Vector distributed, and store

global indicies in Matrix
§ 3 Variants

§ Full use of SHMEM
§ Inline functions by ptr mapping

§ Store 16 pointers in the View
§ Explicit by-rank indexing

§ Make vector 2D
§ Encode rank in column index

