
in Slide, you

logo/management

use one of the two

Los Alamos National Laboratory

Leveraging and Expanding the Capabilities
of the LLVM Compiler Infrastructure for

Exascale Computing

Patrick McCormick

Extreme-scale Scientific Software Stack
Forum (E4S Forum)

Albuquerque, NM
September 23, 2019

Managed by Triad National Security, LLC for the U.S. Department of Energy's NNSA

Los Alamos National Laboratory

9/23/19 | 2

Why LLVM?

• Modular, well designed, mature compiler infrastructure
• Provides foundation for many commercial products

• Very strong community across industry, academia, and the
labs
• Great vehicle for collaborations

• Well defined path for experimentation, testing, adoption, and
deployment
• Caveats: Like any other broad community effort there are lots of

external drivers and priorities for successfully adoption

Los Alamos National Laboratory

9/23/19 | 3

ECP’s LLVM-based Projects

• Many… More than I have time to present in detail today…

• Focus areas:
• Auto-tuning, OpenMP, optimizations for exascale architectures,

extensions and additions to LLVM, Fortran (“flang”), tooling…

• Rest of the talk looks at just a subset
• Primary focus around intermediate representations and

augmenting LLVM’s infrastructure.

Los Alamos National Laboratory

9/23/19 | 4

The 3… No, 4… No, 7 P’s

productivity

predictability

performance

portability

pessimism

pain

pontification

Los Alamos National Laboratory

9/23/19 | 5

What model do we use for programming?
Model:
• A “fast PDP-11” (Sans switches)

• A facade brought to you by:
• Hardware complexity
• A complex compiler : thousands of lines of

code in Clang+LLVM related to hiding details
• Longevity boosted by Moore’s Law & Dennard

Scaling

• A parallel, latency-hiding processor that is
obscured, but not necessarily hidden, by an
abstract, sequential machine model and the
compiler.

David Chisnall: C Is Not a Low-level Language

https://dl.acm.org/citation.cfm?id=3212479

Los Alamos National Laboratory

9/23/19 | 6

Foundation: We’re anything but fickle…
Mindset:

• HPC programmers have long sacrificed
convenience, portability and ease of programming
for (in hope of) getting good performance.

• “Worse is better” always wins over “Get it right” …
(see Matson talk for a programming-centric view)
• Quickly gain a large user base, with pressure

eventually improve it such that it becomes “good
enough”…

“HPC programming is
about extending the
lifespan of languages
over many decades.”

Nicole Hemsoth
The Next Platform

March 26, 2018

Tim Matson: HIPS 2016 Keynote,
2016 IEEE International Parallel and Distributed Processing Symposium Workshops

https://ieeexplore.ieee.org/document/7529885

Los Alamos National Laboratory

9/23/19 | 7

Increasing Complexity is Readily Apparent

63
124

250
326 320

666

0

100

200

300

400

500

600

700

OpenMP 1.0OpenMP 2.0OpenMP 2.5OpenMP 3.0OpenMP 4.0OpenMP 5.0

Number of Pages in the OpenMP
Specification

• Significant and continued growth of
OpenMP feature set…
• What once were ”simple” directives

now have “language-like” features
(e.g. precedence)

• “Worse is better”
• A cautionary note when

complexity starts to get the best of
the situation – level of risk
increases…

Los Alamos National Laboratory

9/23/19 | 8

OpenMP

Runtime

Parallel
Semantics

“OpenMP IR”
+

Clang+LLVM Compiler Design…

LLVM IR Architecture(s)Clang ASTC++

#pragma omp …
for(…) {

… body …
}

// runtime...
…
omp_loop_body(i)
…

function omp_loop_body(int i) {
… body …

} Loop
Optimizer

Los Alamos National Laboratory

9/23/19 | 9

Parallel-Aware Design…

Tapir: Embedding Fork-Join Parallelism into LLVM's Intermediate Representation
by Tao B. Schardl, William S. Moses, and Charles E. Leiserson
Symposium on Principles and Practice of Parallel Programming,
Pages: 249–265, February, 2017

LLVM IR + Runtimes

C++
OpenMP

Kokkos

FleCSI

Architecture(s)Clang AST Parallel
LLVM IR

libomp
qthreads
cilkrts
cudart/PTX
realm
…

• As we work our way through we’re finding modifications to LLVM that can actually enable
better code optimization

• Exposes some portability features/potential (frontend to unsupported runtime – e.g.,
OpenMP to qthreads)

• Open LLVM community discussions, working group. Working implementations key for
longer term adoption discussions…

http://supertech.csail.mit.edu/papers/SchardlMoLe17.pdf

Los Alamos National Laboratory

9/23/19 | 10

Improved C++ Compile Times

Parallel Build

0

2
4

6
8

10

12
14

16
18

20

1 2 3 4 5 10 15 30 60 120 250

Se
co

nd
s

Number of Loops

Kokkos Compile Time Comparisons
(Second Optimization Level)

Clang Kitsune-Clang
Comparison of IR-level

representations

• Motivated by compile time overheads – lower the parallel-IR
directly from semantics -- bypassing template expansion…

Clang
“Kokkos”

Clang

Los Alamos National Laboratory

9/23/19 | 11

Flang: Fortran Frontend for LLVM

The LLVM Compiler Infrastructure• This is actually a brand new ECP project
– Previous investments via NNSA devoted to funding NVIDIA to

open source a Fortran front-end for LLVM
– Officially adopted into LLVM as “flang”
– Still transitioning into the LLVM community. Building an active

community.
– To this point we’ve pushed well over 2.5M lines of tests and

application codes through the parsing and semantics analysis
implementations

• Our project builds on this foundation & focuses on ECP and
associated Fortran-centric needs

– Target architectures, optimizations, multi-dimensional array
support in LLVM, extensive testing…

Los Alamos National Laboratory

9/23/19 | 12

Flang: A Modern Design for an Important Language

Architecture(s)Clang AST LLVM IRC++

FIR Architecture(s)Fortran AST LLVM IRFortran

“Fortran IR” – dialect of MLIR from Google…
Design concepts shared with Swift, Rust, Julia, and others.
But not Clang…

Multi-Level Intermediate Representation Compiler Infrastructure
Tatiana Shpeisman & Chris Lattner (Google)
2019 European LLVM Developers Meeting

(see talk below)

"FIR” talk at LLVM
Devs’ meeting
October 22-23.

https://github.com/tensorflow/mlir
https://llvm.org/devmtg/2019-04/slides/Keynote-ShpeismanLattner-MLIR.pdf

Los Alamos National Laboratory

9/23/19 | 13

ML + Parallel Capabilities
• Many open questions on how to best leverage

MLIR+parallel IR components.

Broad team acknowledgements and thanks:
George Stelle, Alexis Perry-Holby, EJ Park, Danny Shevitz, Hal Finkle,
Johannes Doerfert, Brian Friesen, David Bernholdt, Doug Miles, Steve Scalpone,
Gary Klimowicz, Peter Klausler, Eric Schweitz, Rob Neely, Kim Mish, Mike Heroux

This research was supported by the Exascale Computing Project (17-SC-20-SC), a joint project of
the U.S. Department of Energy’s Office of Science and National Nuclear Security Administration,
responsible for delivering a capable exascale ecosystem, including software, applications, and
hardware technology, to support the nation’s exascale computing imperative.

