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Why LLVM?

• Modular, well designed, mature compiler infrastructure
• Provides foundation for many commercial products

• Very strong community across industry, academia, and the 
labs
• Great vehicle for collaborations

• Well defined path for experimentation, testing, adoption, and 
deployment
• Caveats: Like any other broad community effort there are lots of 

external drivers and priorities for successfully adoption
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ECP’s LLVM-based Projects

• Many… More than I have time to present in detail today… 

• Focus areas:
• Auto-tuning, OpenMP, optimizations for exascale architectures, 

extensions and additions to LLVM, Fortran (“flang”), tooling… 

• Rest of the talk looks at just a subset
• Primary focus around intermediate representations and 

augmenting LLVM’s infrastructure.
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The 3… No, 4… No, 7 P’s

productivity

predictability

performance

portability

pessimism

pain

pontification
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What model do we use for programming?
Model:
• A “fast PDP-11” (Sans switches)

• A facade brought to you by:
• Hardware complexity
• A complex compiler : thousands of lines of 

code in Clang+LLVM related to hiding details
• Longevity boosted by Moore’s Law & Dennard 

Scaling

• A parallel, latency-hiding processor that is 
obscured, but not necessarily hidden, by an 
abstract, sequential machine model and the 
compiler.

David Chisnall: C Is Not a Low-level Language

https://dl.acm.org/citation.cfm?id=3212479
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Foundation: We’re anything but fickle… 
Mindset: 

• HPC programmers have long sacrificed 
convenience, portability and ease of programming 
for (in hope of) getting good performance.

• “Worse is better” always wins over “Get it right” … 
(see Matson talk for a programming-centric view)
• Quickly gain a large user base, with pressure 

eventually improve it such that it becomes “good 
enough”…

“HPC programming is 
about extending the 
lifespan of languages 
over many decades.”

Nicole Hemsoth
The Next Platform

March 26, 2018

Tim Matson: HIPS 2016 Keynote, 
2016 IEEE International Parallel and Distributed Processing Symposium Workshops

https://ieeexplore.ieee.org/document/7529885
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Increasing Complexity is Readily Apparent
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• Significant and continued growth of 
OpenMP feature set… 
• What once were ”simple” directives 

now have “language-like” features 
(e.g. precedence)

• “Worse is better” 
• A cautionary note when 

complexity starts to get the best of 
the situation – level of risk 
increases… 
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OpenMP

Runtime

Parallel
Semantics

“OpenMP IR”
+

Clang+LLVM Compiler Design… 

LLVM IR Architecture(s)Clang ASTC++

#pragma omp …
for(…) { 

… body … 
}

// runtime... 
…
omp_loop_body(i)
…

function omp_loop_body(int i) { 
… body … 

} Loop
Optimizer
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Parallel-Aware Design… 

Tapir: Embedding Fork-Join Parallelism into LLVM's Intermediate Representation
by Tao B. Schardl, William S. Moses, and Charles E. Leiserson
Symposium on Principles and Practice of Parallel Programming,
Pages: 249–265, February, 2017

LLVM IR + Runtimes

C++
OpenMP

Kokkos

FleCSI

Architecture(s)Clang AST Parallel
LLVM IR

libomp
qthreads
cilkrts
cudart/PTX
realm
…

• As we work our way through we’re finding modifications to LLVM that can actually enable 
better code optimization

• Exposes some portability features/potential (frontend to unsupported runtime – e.g., 
OpenMP to qthreads)

• Open LLVM community discussions, working group.  Working implementations key for 
longer term adoption discussions… 

http://supertech.csail.mit.edu/papers/SchardlMoLe17.pdf
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Improved C++ Compile Times

Parallel Build
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Clang Kitsune-Clang
Comparison of IR-level 

representations

• Motivated by compile time overheads – lower the parallel-IR 
directly from semantics -- bypassing template expansion…

Clang
“Kokkos”

Clang
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Flang: Fortran Frontend for LLVM

The LLVM Compiler Infrastructure• This is actually a brand new ECP project
– Previous investments via NNSA devoted to funding NVIDIA to 

open source a Fortran front-end for LLVM
– Officially adopted into LLVM as “flang”
– Still transitioning into the LLVM community. Building an active 

community.
– To this point we’ve pushed well over 2.5M lines of tests and 

application codes through the parsing and semantics analysis 
implementations

• Our project builds on this foundation & focuses on ECP and 
associated Fortran-centric needs

– Target architectures, optimizations, multi-dimensional array 
support in LLVM, extensive testing…  
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Flang: A Modern Design for an Important Language

Architecture(s)Clang AST LLVM IRC++

FIR Architecture(s)Fortran AST LLVM IRFortran

“Fortran IR” – dialect of MLIR from Google…
Design concepts shared with Swift, Rust, Julia, and others. 
But not Clang… 

Multi-Level Intermediate Representation Compiler Infrastructure
Tatiana Shpeisman & Chris Lattner (Google)
2019 European LLVM Developers Meeting 

(see talk below)

"FIR” talk at LLVM 
Devs’ meeting 
October 22-23.

https://github.com/tensorflow/mlir
https://llvm.org/devmtg/2019-04/slides/Keynote-ShpeismanLattner-MLIR.pdf
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ML + Parallel Capabilities
• Many open questions on how to best leverage 

MLIR+parallel IR components.
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